[1] |
FENG D L, XIAO M Q, LIU Y X, et al. A kernelprincipal component analysis-based degradation modeland remaining useful life estimation for the turbofanengine [J]. Advances in Mechanical Engineering, 2016,8(5): 1-13.
|
[2] |
XIA T B, DONG Y F, XIAO L, et al. Recent advancesin prognostics and health management for advancedmanufacturing paradigms [J]. Reliability Engineeringand System Safety, 2018, 178: 255-268.
|
[3] |
NIETO P J G, GARC′IA-GONZALO E, LASHERASF S, et al. Hybrid PSO-SVM-based method for forecastingof the remaining useful life for aircraft enginesand evaluation of its reliability [J]. Reliability Engineeringand System Safety, 2015, 138: 219-231.
|
[4] |
NG S S Y, XING Y J, TSUI K L. A naive Bayes modelfor robust remaining useful life prediction of lithiumionbattery [J]. Applied Energy, 2014, 118: 114-123.
|
[5] |
DEUTSCH J, HE D. Using deep learning-based approachto predict remaining useful life of rotating components[J]. IEEE Transactions on Systems, Man, andCybernetics: Systems, 2018, 48(1): 11-20.
|
[6] |
BABU G S, ZHAO P L, LI X L. Deep convolutionalneural network based regression approach for estimationof remaining useful life [C]//International Conferenceon Database Systems for Advanced Applications.Dallas, USA: LNCS, 2016: 214-228.
|
[7] |
ZHANG Y Z, XIONG R, HE H W, et al. Long shorttermmemory recurrent neural network for remaininguseful life prediction of lithium-ion batteries [J]. IEEETransactions on Vehicular Technology, 2018, 67(7):5695-5705.
|
[8] |
ZHENG S, RISTOVSKI K, FARAHAT A, et al. Longshort-term memory network for remaining useful lifeestimation [C]//International Conference on Prognosticsand Health Management. Florida, USA: IEEE,2017: 88-95.
|
[9] |
ZEYER A, DOETSCH P, VOIGTLAENDER P, et al.A comprehensive study of deep bidirectional LSTMRNNs for acoustic modeling in speech recognition[C]//International Conference on Acoustics, Speechand Signal Processing. New Orleans, USA: IEEE, 2017:2462-2466.
|
[10] |
ALTHELAYA K A, EL-ALFY E S M, MOHAMMEDS. Evaluation of bidirectional LSTM for short- andlong-term stock market prediction [C]//InternationalConference on Information and Communication Systems.Irbid, Jordan: IEEE, 2018: 151-156.
|
[11] |
JOLLIFFE I T, CADIMA J. Principal componentanalysis: A review and recent developments [J].Philosophical Transactions of the Royal Society A:Mathematical, Physical & Engineering Sciences, 2016,374(2065): 20150202.
|
[12] |
ZHAO M B, ZHANG Z, CHOW T W, S et al. A generalsoft label based linear discriminant analysis forsemi-supervised dimensionality reduction [J]. NeuralNetworks, 2014, 55: 83-97.
|
[13] |
HINTON G E, SALAKHUTDINOV R R. Reducingthe dimensionality of data with neural networks [J].Science, 2006, 313(5786): 504-507.
|
[14] |
WANG Y S, YAO H X, ZHAO S C, et al. Auto-encoderbased dimensionality reduction [J]. Neurocomputing,2016, 184: 232-242.
|
[15] |
SAXENA A, GOEBEL K, SIMON D, et al. Damagepropagation modeling for aircraft engine run-to-failuresimulation [C]//International Conference on Prognosticsand Health Management. Denver, Colorado, USA:IEEE, 2008: 1-9.
|
[16] |
WU Y T, YUAN M, DONG S P, et al. Remaininguseful life estimation of engineered systems usingvanilla LSTM neural networks [J]. Neurocomputing,2018, 275: 167-179.
|
[17] |
ARCOS-GARC′IA ′ A, ′ALVAREZ-GARC′IA J A,SORIA-MORILLO L M. Deep neural network for trafficsign recognition systems: An analysis of spatialtransformers and stochastic optimisation methods [J].Neural Networks, 2018, 99: 158-165.
|
[18] |
HEIMES F O. Recurrent neural networks for remaininguseful life estimation [C]//International Conferenceon Prognostics and Health Management. Denver,Colorado, USA: IEEE, 2008: 59-64.
|