[1] |
JARDINE A K S, LIN D M, BANJEVIC D. A reviewon machinery diagnostics and prognostics implementingcondition-based maintenance [J]. Mechanical Systemsand Signal Processing, 2006, 20(7): 1483-1510.
|
[2] |
XIA T B, DONG Y F, XIAO L, et al. Recent advancesin prognostics and health management for advancedmanufacturing paradigms [J]. Reliability Engineeringand System Safety, 2018, 178: 255-268.
|
[3] |
BARALDI P, MAIO F D, AL-DAHIDI S, et al. Predictionof industrial equipment remaining useful life byfuzzy similarity and belief function theory [J]. ExpertSystems with Applications, 2017, 83: 226-241.
|
[4] |
AL-DAHIDI S, MAIO F D, BARALDI P, et al. Remaininguseful life estimation in heterogeneous fleetsworking under variable operating conditions [J]. ReliabilityEngineering and System Safety, 2016, 156: 109-124.
|
[5] |
TIAN Z G, WONG L, SAFAEI N. A neural networkapproach for remaining useful life prediction utilizingboth failure and suspension histories [J]. MechanicalSystems and Signal Processing, 2010, 24(5): 1542-1555.
|
[6] |
TAO F L, YANG C, CHENG Y J, et al. Machine componenthealth prognostics with only truncated historiesusing geometrical metric approach [J]. MechanicalSystems and Signal Processing, 2018, 113: 168-179.
|
[7] |
WANG D, YANG F F, TSUI K L, et al. Remaininguseful life prediction of lithiumion batteries basedon spherical cubature particle filter [J]. IEEE Transactionson Instrumentation and Measurement, 2016,65(6): 1282-1291.
|
[8] |
SI X S. An adaptive prognostic approach via nonlineardegradation modeling: Application to battery data[J]. IEEE Transactions on Industrial Electronics, 2015,62(8): 5082-5096.
|
[9] |
XIAO L, CHEN X H, ZHANG X H, et al. A novelapproach for bearing remaining useful life estimationunder neither failure nor suspension histories condition[J]. Journal of Intelligent Manufacturing, 2017, 28(8):1893-1914.
|
[10] |
TIAN Z G, JIN T D, WU B R, et al. Condition basedmaintenance optimization for wind power generationsystems under continuous monitoring [J]. RenewableEnergy, 2011, 36(5): 1502-1509.
|
[11] |
XIAO L, SONG S L, CHEN X H, et al. Joint optimizationof production scheduling and machine group preventivemaintenance [J]. Reliability Engineering andSystem Safety, 2016, 146: 68-78.
|
[12] |
SHAFIEE M, FINKELSTEIN M, B′ERENGUER C.An opportunistic condition-based maintenance policyfor offshore wind turbine blades subjected to degradationand environmental shocks [J]. Reliability Engineeringand System Safety, 2015, 142: 463-471.
|
[13] |
XIA T B, TAO X Y, XI L F. Operation process rebuilding(OPR)-oriented maintenance policy for changeablesystem structures [J]. IEEE Transactions on AutomationScience and Engineering, 2017, 14(1): 139-148.
|
[14] |
ZHANG C, GAO W, GUO S, et al. Opportunisticmaintenance for wind turbines considering imperfect,reliability-based maintenance [J]. Renewable Energy,2017, 103: 606-612.
|
[15] |
SARKER B R, FAIZ T I. Minimizing maintenancecost for offshore wind turbines following multi-level opportunisticpreventive strategy [J]. Renewable Energy,2016, 85: 104-113.
|
[16] |
ABDOLLAHZADEH H, ATASHGAR K, ABBASI M.Multi-objective opportunistic maintenance optimizationof a wind farm considering limited number ofmaintenance groups [J]. Renewable Energy, 2016, 88:247-261.
|
[17] |
YILDIRIMM, GEBRAEEL N Z, SUN X A. Integratedpredictive analytics and optimization for opportunisticmaintenance and operations in wind farms [J]. IEEETransactions on Power Systems, 2017, 32(6): 4319-4328.
|
[18] |
VERBERT K, SCHUTTER B D, BABUˇSKA R.Timely condition-based maintenance planning formulti-component systems [J]. Reliability Engineeringand System Safety, 2017, 159: 310-321.
|
[19] |
ZHANG X H, KANG J S, JIN T D. Degradation modelingand maintenance decisions based on BayesianBelief Networks [J]. IEEE Transactions on Reliability,2014, 63(2): 620-633.
|
[20] |
NECTOUX P, GOURIVEAU R, MEDJAHER K, etal. PRONOSTIA: An experimental platform for bearingsaccelerated degradation tests [C]//IEEE InternationalConference on Prognostics and Health Management.Denver, Colorado, USA: IEEE, 2012: 1-8.
|