上海交通大学学报(英文版) ›› 2017, Vol. 22 ›› Issue (5): 609-614.doi: 10.1007/s12204-017-1878-5
LIU Hongyia* (刘红毅), ZHANG Zhengronga (张峥嵘), XIAO Liangb (肖亮), WEI Zhihuib (韦志辉)
出版日期:
2017-09-30
发布日期:
2017-09-30
通讯作者:
LIU Hongyi (刘红毅)
E-mail: hyliu@njust.edu.cn
LIU Hongyia* (刘红毅), ZHANG Zhengronga (张峥嵘), XIAO Liangb (肖亮), WEI Zhihuib (韦志辉)
Online:
2017-09-30
Published:
2017-09-30
Contact:
LIU Hongyi (刘红毅)
E-mail: hyliu@njust.edu.cn
摘要: An enhancement-based Poisson denoising method for photon-limited images is presented. The noisy image is firstly pre-processed for enhancing incomplete object information, and then it is denoised while preserving the restored structural details. A variational regularization model based on Euler’s elastica (EE) is proposed for image enhancement pre-processing. A nonlocal total variation (NLTV) regularization model is then employed in the second stage of image denoising. The above two optimization problems are solved by the alternating direction method of multipliers (ADMM). For Poissonian images with low image peak values, experiments demonstrate the validity and efficiency of the proposed method for both restoring geometric structure and removing noise.
中图分类号:
LIU Hongyia* (刘红毅), ZHANG Zhengronga (张峥嵘), XIAO Liangb (肖亮), WEI Zhihuib (韦志辉). Poisson Noise Removal Based on Nonlocal Total Variation with Euler’s Elastica Pre-processing[J]. 上海交通大学学报(英文版), 2017, 22(5): 609-614.
LIU Hongyia* (刘红毅), ZHANG Zhengronga (张峥嵘), XIAO Liangb (肖亮), WEI Zhihuib (韦志辉). Poisson Noise Removal Based on Nonlocal Total Variation with Euler’s Elastica Pre-processing[J]. Journal of shanghai Jiaotong University (Science), 2017, 22(5): 609-614.
[1] | FRYZLEWICZ P, NASON G P. A Haar-Fisz algorithmfor poisson intensity estimation [J]. Journal ofComputational & Graphical Statistics, 2004, 13(3):621-638. |
[2] | DEY N, BLANC-FERAUD L, ZIMMER C, et al.Richardson-Lucy algorithm with total variation regularizationfor 3D confocal microscope deconvolution[J]. Microscopy Research & Technique, 2006, 69(4):260-266. |
[3] | M¨AKITALO M, FOI A. Optimal inversion of theAnscombe transformation in low-count Poisson imagedenoising [J]. IEEE Transactions on Image Processing,2011, 20(1): 99-109. |
[4] | BUADES A, COLL B, MOREL J M. A review of imagedenoising algorithms, with a new one [J]. SIAMJournal on Multiscale Modeling & Simulation, 2005,4(2): 490-530. |
[5] | FENG J Z, SONG L, HUO X M, et al. An optimizedpixel-wise weighting approach for patch-based imagedenoising [J]. IEEE Signal Processing Letters, 2014,22(1): 115-119. |
[6] | DABOV K, FOI A, KATKOVNIK V, et al. Image denoisingby sparse 3D transform-domain collaborativefiltering [J]. IEEE Transactions on Image Processing,2007, 16(8): 2080-2095. |
[7] | DELEDALLE C A, LTCI C, SALMON J, et al. Imagedenoising with patch based PCA: Local versus global[C]//Proceedings of the 22nd British Machine VisionConference. Dundee: BMVA Press, 2011: 1-10. |
[8] | SALMON J, HARMANY Z, DELEDALLE C A, et al.Poisson noise reduction with non-local PCA [J]. Journalof Mathematical Imaging & Vision, 2014, 48(2):279-294. |
[9] | GIRYES R, ELAD M. Sparsity-based poisson denoisingwith dictionary learning [J]. IEEE Transactions onImage Processing, 2014, 23(12): 5057-5069. |
[10] | ZHANG X, BURGER M, BRESSON X, et al. Bregmanizednonlocal regularization for deconvolution andsparse reconstruction [J]. SIAM Journal on ImagingSciences, 2010, 3(3): 253-276. |
[11] | LANDI G, PICCOLOMINI E L. NPTool: A Matlabsoftware for nonnegative image restoration withNewton projection methods [J]. Numerical Algorithms,2013, 62(3): 487-504. |
[12] | LANDI G, PICCOLOMINI E L. An efficient methodfor nonnegatively constrained total variation-based denoisingof medical images corrupted by poisson noise[J]. Computerized Medical Imaging & Graphics, 2012,36(1): 38-46. |
[13] | ZHANG Z R, HUANG L L, FEI X, et al. Image poissondenoising model and algorithm based on nonlocal TVregularization [J]. Journal of System Simulation, 2014,26(9): 2010-2015 (in Chinese). |
[14] | CHAN T F, SUNG H K, SHEN J. Euler’s elastica andcurvature based inpaintings [J]. SIAM Journal of AppliedMathematics, 2002, 63(2): 564-592. |
[15] | TAI X C, HAHN J, CHUNG G J. A fast algorithmfor Euler’s elastica model using augmented Lagrangianmethod [J]. SIAM Journal on Imaging Sciences, 2011,4(1): 313-344. |
[16] | DUAN Y P, WANG Y, HAHN J. A fast augmentedLagrangian method for Euler’s elastica models [J]. NumericalMathematics Theory Methods & Applications,2013, 6(1): 47-71. |
[17] | ECKSTEIN J, BERTSEKAS D P. On the Douglas-Rachford splitting method and the proximal point algorithmfor maximal monotone operators [J]. MathematicalProgramming, 1992, 55: 293-318. |
[1] | 蒋祖华1, 周宏明2, 陶宁蓉3, 李柏鹤1. 基于知识的船舶曲面分段建造调度及应用[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 759-765. |
[2] | 于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1. 基于增强现实技术的新型经皮肾穿刺训练可视化工具[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-. |
[3] | 姜锐1,朱瑞祥1,蔡萧萃1,苏虎2. 具有增强注意力的前景分割网络[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 360-369. |
[4] | 祝 楷, 熊柏青, 闫宏伟, 张永安, 李志辉, 李锡武, 刘红伟, 温 凯, 闫丽珍, . 辊道传送速度对大规格铝合金厚板应力分布及演变影响的数值模拟研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 255-263. |
[5] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 757-767. |
[6] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[7] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 240-249. |
[8] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[9] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[10] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 121-136. |
[11] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 670-679. |
[15] | SHI Lianxing (石连星), WANG Zhiheng (王志恒), LI Xiaoyong (李小勇) . Novel Data Placement Algorithm for Distributed Storage System Based on Fault-Tolerant Domain[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 463-470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||