上海交通大学学报(英文版) ›› 2017, Vol. 22 ›› Issue (4): 466-473.doi: 10.1007/s12204-017-1849-x
WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健)
出版日期:
2017-08-03
发布日期:
2017-08-03
通讯作者:
WU Bin (吴斌)
E-mail:wubin-926@163.com
WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健)
Online:
2017-08-03
Published:
2017-08-03
Contact:
WU Bin (吴斌)
E-mail:wubin-926@163.com
摘要: Abstract: A fault diagnosis method based on improved extreme learning machine (IELM) is proposed to solve the weakness (weak generalization ability, low diagnostic rate) of traditional fault diagnosis with feedforward neural network algorithm. This method fuses signal feature vectors, extracts six parameters as the principal component analysis (PCA) variables, and calculates correlation coefficient matrix among the variables. The weight values of control parameters in the extreme learning model are dynamically adjusted according to the test samples’ constantly changing. Consequently, the weight fixed drawback in the original model can be remedied. A fault simulation experiment platform for wind turbine drive system is built, eight kinds of fault modes are diagnosed by the improved extreme learning model, and the result is compared with that of other machine learning methods. The experiment indicates that the method can enhance the accuracy and generalization ability of diagnosis, and increase the computing speed. It is convenient for engineering application.
中图分类号:
WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健). Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine[J]. 上海交通大学学报(英文版), 2017, 22(4): 466-473.
WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健). Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine[J]. Journal of shanghai Jiaotong University (Science), 2017, 22(4): 466-473.
[1] | WU C Y, LIU J, PENG F Q, et al. Gearbox fault diagnosisusing adaptive zero phase time-varying filterbased on multi-scale chirplet sparse signal decomposition[J]. Chinese Journal of Mechanical Engineering,2013, 26(4): 831-838. |
[2] | CHEN X M, YU D J, LI R. Analysis of gearbox compoundfault vibration signal using morphological componentanalysis [J]. Journal of Mechanical Engineering,2014, 50(3): 108-115 (in Chinese). |
[3] | CHEN G H, QIE L F, ZHANG A J, et al. ImprovedCICA algorithm used for single channel compoundfault diagnosis of rolling bearings [J]. Chinese Journalof Mechanical Engineering, 2016, 29(1): 204-211. |
[4] | FELDMAN M. Non-linear free vibration identificationvia the Hilbert transform [J]. Journal of Sound andVibration, 1997, 208(3): 475-489. |
[5] | CUI L L, MA C Q, ZHANG F B, et al. Quantitativediagnosis of fault severity trend of rolling elementbearings [J]. Chinese Journal of Mechanical Engineering,2015, 28(6): 1254-1260. |
[6] | LI Q, ATLAS L. Coherent modulation filtering forspeech [C]//Proceedings of the IEEE InternationalConference on Acoustics, Speech and Signal Processing.Las Vegas, NV: IEEE, 2008: 4481-4484. |
[7] | WANG Y B. Fault diagnosis of mine ventilator basedon neural network [D]. Shanghai: School of ElectronicInformation and Electrical Engineering, Shanghai JiaoTong University, 2012 (in Chinese). |
[8] | JAOUHER B A, NADER F, LOTFI S, et al. Applicationof empirical mode decomposition and artificialneural network for automatic bearing fault diagnosisbased on vibration signals [J]. Applied Acoustics, 2015,89: 16-27. |
[9] | LI W H, WENG S L, ZHANG S H. A firefly neuralnetwork and its application in bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2015, 51(7):99-106 (in Chinese). |
[10] | LI N, WANG L G, JIA M T, et al. Fault intelligentdiagnosis system for fan based on information fusion[J]. Journal of Central South University (Science andTechnology), 2013, 44(7): 2861-2866 (in Chinese). |
[11] | HE Y, WANG G H, GUAN X. Information fusion theoryand application [M]. Beijing: Publishing House ofelectronics industry, 2010: 17-42 (in Chinese). |
[12] | XU X G, WANG S L, LIU J L. Mechanical fault diagnosisof fan based on wavelet packet energy analysisand improved support vector machine [J]. Journal ofChinese Society of Power Engineering, 2013, 33(8):606-612 (in Chinese). |
[13] | NIKOLAOU N G, ANTONIADIS I A. Rolling elementbearing fault diagnosis using wavelet packets [J]. NDT& E International, 2002, 35(3): 197-205. |
[14] | WANG Z Y, CHEN J, XIAO W B, et al. Fault diagnosisof rolling element bearing based on constrainedindependent component analysis [J]. Journal of Vibrationand Shock, 2012, 31(9): 118-122 (in Chinese). |
[15] | WANG Y, XU G H, LIANG L, et al. Detection ofweak transient signals based on wavelet packet transformand manifold learning for rolling element bearingfault diagnosis [J]. Mechanical Systems and SignalProcessing, 2015, 54/55: 259-276. |
[16] | HUANG G B, ZHU Q Y, SIEWC K. Extreme learningmachine: Theory and applications [J]. Neuroputing,2006, 70: 489-451. |
[17] | YUAN J H, ZHANG L W, WANG Y, et al. Study oftransformers fault diagnosis based on extreme learningmachine [J]. Electrical Measurement & Instrumentation,2013, 50(12): 21-26. |
[18] | RONG H J, HUANG G B, SUNDARARAJANN, et al.Online sequential fuzzy extreme learning machine forfunction approximation and classification problems [J].IEEE Transactions on Systems Man and CyberneticsPart B, 2009, 39(4): 1067-1072. |
[19] | YANG Y M. Researches on extreme learning theory forsystem identification and applications [D]. Changsha:College of Electrical and Information Engineering, HunanUniversity, 2013: 19-22 (in Chinese). |
[20] | WANG H L, HE X, LU J H, et al. Analog circuit onlinefault diagnosis based on fix-size sequence extremelearning machine [J]. Chinese Journal of Scientific Instrument,2014, 35(4): 738-744 (in Chinese). |
[1] | KOU Haixia, AN Zongwen, MA Qiang, GUO Xu. Lifetime Prediction of Wind Turbine Blade Based on Full-Scale Fatigue Testing [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 755-761. |
[2] | YU Zelin, SUN Pengwen, WANG Dong. Fatigue Life Prediction for Flange Connecting Bolts of Wind Turbine Tower[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 526-530. |
[3] | ZHENG Yuqiao, ZHANG Lu, PAN Yongxiang, HE Zhe . Multi-Objective Structural Optimization of a Wind Turbine Tower[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 538-544. |
[4] | CEN Haitang (岑海堂), WEI Ruitao (魏瑞涛), TIAN Wenliang (田文良), HUANG Jinlei (黄金磊), NA. Finite Element Simulation Study on Blade Coating of Wind Turbine[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 223-229. |
[5] | GUO Wenqiang (郭文强), SUN Pengwen (孙鹏文), NIU Lei (牛磊), WANG Zongtao (王宗涛). Fatigue Life Analysis of Longitudinal Welding Seam for Wind Turbine Tower[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(2): 261-265. |
[6] | LIU Jia (刘佳), TIAN Rui (田瑞), NIE Jing (聂晶). Design of Wind Turbine Blade for Solar Chimney Power Plant[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 820-826. |
[7] | YU Kun (俞昆), TAN Jiwen (谭继文), LIN Tianran (林天然). Fault Diagnosis of Rolling Element Bearing Using Multi-Scale Lempel-Ziv Complexity and Mahalanobis Distance Criterion[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 696-701. |
[8] | MENG Long (孟龙), HE Yanping (何炎平), ZHOU Tao (周涛), ZHAO Yongsheng (赵永生), LIU Yadon. Research on Dynamic Response Characteristics of 6MW Spar-Type Floating Offshore Wind Turbine[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(4): 505-. |
[9] | ABBAS Zulkarnain, ABBAS Saqlain, BUTT Zubair, PASHA Riffat Asim. Design and Parametric Investigation of Horizontal Axis Wind Turbine[J]. sa, 2018, 23(3): 345-. |
[10] | DENG Shijie (邓士杰), TANG Liwei (唐力伟), ZHANG Xiaotao (张晓涛). Research of Adaptive Neighborhood Incremental Principal Component Analysis and Locality Preserving Projection Manifold Learning Algorithm[J]. sa, 2018, 23(2): 269-275. |
[11] | LIU Yinhua1* (刘银华), YE Xialiang1 (叶夏亮), JIN Sun2 (金隼). A Bayesian Based Process Monitoring and Fixture Fault Diagnosis Approach in the Auto Body Assembly Process[J]. 上海交通大学学报(英文版), 2016, 21(2): 164-172. |
[12] | ZHAO Yongsheng (赵永生), YANG Jianmin (杨建民), HE Yanping* (何炎平), GU Mintong (顾敏童). Dynamic Response Analysis of a Multi-Column Tension-Leg-Type Floating Wind Turbine Under Combined Wind and Wave Loading[J]. 上海交通大学学报(英文版), 2016, 21(1): 103-111. |
[13] | WANG Kai1,2 (王 凯), LUO Hao1* (罗 浩), KRUEGER M1,DING S X1, YANG Xu3* (杨 旭), JEDSA. Data-Driven Process Monitoring and Fault Tolerant Control in Wind Energy Conversion System with Hydraulic Pitch System[J]. 上海交通大学学报(英文版), 2015, 20(4): 489-494. |
[14] | ZHANG Wei1* (张 伟), HOU Yue-min1,2 (侯悦民). Systematic Safety Analysis Method for Power Generating Equipment[J]. 上海交通大学学报(英文版), 2015, 20(4): 508-512. |
[15] | SHANG Qun-li1 (尚群立), ZHANG Zhen2 (张 镇), XU Xiao-bin2* (徐晓滨). Dynamic Fault Diagnosis Using the Improved Linear Evidence Updating Strategy[J]. 上海交通大学学报(英文版), 2015, 20(4): 427-436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||