J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (4): 441-.doi: 10.1007/s12204-022-2519-1
• • 上一篇
姚乐宇1,何凡1,3,彭海霞2,王晓峰2,周璐2,黄晓霖1,3
收稿日期:
2021-04-16
接受日期:
2021-08-02
出版日期:
2023-07-28
发布日期:
2023-07-31
YAO Leyul (姚乐宇),HE Fan1,3 (何凡), PENG Haixia2* (彭海霞), WANG Xiaofeng2 (王晓峰),ZHOU Lu2 (周璐), HUANG Xiaolin1,3* (黄晓霖)
Received:
2021-04-16
Accepted:
2021-08-02
Online:
2023-07-28
Published:
2023-07-31
摘要: 结直肠癌是人类最大的健康威胁之一,每年夺去数千人的生命。结肠镜检查是临床实践中检查肠壁、在早期发现并切除息肉、防止息肉恶性化和发展成为癌症的金标准。近年来,计算机辅助息肉检测系统被广泛应用于结肠镜检查中以提高结肠镜检查的质量,提高息肉的检出率。目前,最有效的计算机辅助系统是用机器学习方法进行构建的。然而,开发这样的计算机辅助检测系统需要有经验的医生从结肠镜检查视频中标记大量图像数据,这一过程极其耗时、费力且十分昂贵。一种可能的解决方案是采用半监督学习,它可以在不必标注所有数据的数据集上建立检测系统。在本文中,基于最先进的对象检测方法和半监督学习技术,我们设计并实现了一个半监督结肠镜息肉检测系统,该系统的实现包括四个主要步骤:(1)使用所有标记数据进行标准监督训练;(2) 对未标记的数据进行推理以获得伪标签;(3) 将一系列强数据增强方法应用于未标记数据和伪标记;(4) 将标记的数据、未标记的数据与其伪标签组合以重新训练检测器。我们在公开数据集和原始私有数据集上对半监督学习系统进行了评估,并证明了其有效性。此外,半监督学习系统的推理速度也可以满足实时运转的要求。
中图分类号:
姚乐宇1,何凡1,3,彭海霞2,王晓峰2,周璐2,黄晓霖1,3. 利用半监督学习提高结肠镜息肉检出率[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 441-.
YAO Leyul (姚乐宇),HE Fan1,3 (何凡), PENG Haixia2* (彭海霞), WANG Xiaofeng2 (王晓峰),ZHOU Lu2(周璐), HUANG Xiaolin1,3* (黄晓霖). Improving Colonoscopy Polyp Detection Rate Using Semi-Supervised Learning[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 441-.
[1] MATHUR P, SATHISHKUMAR K, CHATURVEDIM, et al. Cancer statistics, 2020: Report from nationalcancer registry programme, India [J]. JCO Global Oncology, 2020, 6: 1063-1075. [2] LEUFKENS A M, VAN OIJEN M G H, VLEGGAARF P, et al. Factors influencing the miss rate of polypsin a back-to-back colonoscopy study [J]. Endoscopy,2012, 44(5): 470-475. [3] AHMAD O F, SOARES A S, MAZOMENOS E, et al.Artificial intelligence and computer-aided diagnosis incolonoscopy: Current evidence and future directions[J]. The Lancet Gastroenterology & Hepatology, 2019,4(1): 71-80. [4] URBAN G, TRIPATHI P, ALKAYALI T, et al. Deeplearning localizes and identifies polyps in real time with96% accuracy in screening colonoscopy [J]. Gastroenterology, 2018, 155(4): 1069-1078.e8. [5] BERNAL J, S′ANCHEZ F J, FERN′ANDEZESPARRACH G, et al. WM-DOVA maps for accuratepolyp highlighting in colonoscopy: Validation vs.saliency maps from physicians [J]. ComputerizedMedical Imaging and Graphics, 2015, 43: 99-111. [6] FERN′ANDEZ-ESPARRACH G, BERNAL J,L′OPEZ-CER ′ON M, et al. Exploring the clinicalpotential of an automatic colonic polyp detectionmethod based on the creation of energy maps [J].Endoscopy, 2016, 48(9): 837-842. [7] BERNAL J, S′ANCHEZ J, VILARI ?NO F. Towardsautomatic polyp detection with a polyp appearancemodel [J]. Pattern Recognition, 2012, 45(9): 3166-3182. [8] SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in WCE images for earlydiagnosis of colorectal cancer [J]. International Journal of Computer Assisted Radiology and Surgery, 2014,9(2): 283-293. [9] JHA D, SMEDSRUD P H, RIEGLER M A,et al. Kvasir-SEG: A segmented polyp dataset[M]//MultiMedia modeling. Cham: Springer, 2019:451-462. [10] SOHN K, BERTHELOT D, LI C L, et al. FixMatch:Simplifying semi-supervised learning with consistencyand confidence [C]//34th Conference on Neural Information Processing Systems. Online: Committee ofNeurIPS, 2020: 1-13. [11] VERMA V, KAWAGUCHI K, LAMB A, et al. Interpolation consistency training for semi-supervised learning[J]. Neural Networks, 2022, 145: 90-106. [12] BERTHELOT D, CARLINI N, GOODFELLOW I, etal. MixMatch: A holistic approach to semi-supervisedlearning [C]//33rd Conference on Neural Information Processing Systems. Vancouver: Committee ofNeurIPS, 2019: 1-11. [13] MIYATO T, MAEDA S I, KOYAMA M, et al. Virtual adversarial training: A regularization methodfor supervised and semi-supervised learning [J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1979-1993. [14] JEONG J, VERMA V, HYUN M, et al. Interpolationbased semi-supervised learning for object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021:11597-11606. [15] SOHN K, ZHANG Z Z, LI C L, et al. Asimple semi-supervised learning framework for object detection [DB/OL]. (2020-12-03). https://arxiv.org/abs/2005.04757. [16] CHEN C, DONG S Y, TIAN Y, et al. Temporal selfensembling teacher for semi-supervised object detection [J]. IEEE Transactions on Multimedia, 2022, 24:3679-3692. [17] ZHAO N, CHUA T S, LEE G H. SESS: selfensembling semi-supervised 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020:11076-11084. [18] XIE Y T, ZHANG J P, XIA Y. Semi-supervised adversarial model for benign-malignant lung nodule classifi-cation on chest CT [J]. Medical Image Analysis, 2019,57: 237-248. [19] YE D H, POHL K M, DAVATZIKOS C. Semisupervised pattern classification: Application to structural MRI of Alzheimer’s disease [C]//2011 International Workshop on Pattern Recognition in NeuroImaging. Seoul: IEEE, 2011: 1-4. [20] GAO Y, LU W N, SI X B, et al. Deep model-basedsemi-supervised learning way for outlier detection inwireless capsule endoscopy images [J]. IEEE Access,2020, 8: 81621-81632. [21] VAN ENGELEN J E, HOOS H H. A survey onsemi-supervised learning [J]. Machine Learning, 2020,109(2): 373-440. [22] SINDHWANI V, KEERTHI S S. Large scale semisupervised linear SVMs [C]//29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle: ACM, 2006:477-484. [23] TARVAINEN A, VALPOLA H. Mean teachers arebetter role models: Weight-averaged consistency targets improve semi-supervised deep learning results[C]//31st Conference on Neural Information Processing Systems. Long Beach: Committee of NIPS, 2017:1-10. [24] ZHAI X H, OLIVER A, KOLESNIKOV A, et al. S4L:Self-supervised semi-supervised learning [C]//2019IEEE/CVF International Conference on ComputerVision. Seoul: IEEE, 2019: 1476-1485. [25] LAINE S, AILA T. Temporal ensembling for semisupervised learning [C]//5th International Conferenceon Learning Representations. Toulon: Committee ofICLR, 2017: 1-13. [26] GOLHAR M, BOBROW T L, KHOSHKNAB M P,et al. Improving colonoscopy lesion classification usingsemi-supervised deep learning [J]. IEEE Access, 2021,9: 631-640. [27] GUO X Q, YUAN Y X. Semi-supervised WCE imageclassification with adaptive aggregated attention [J].Medical Image Analysis, 2020, 64: 101733. [28] ROSS T, ZIMMERER D, VEMURI A, et al. Exploiting the potential of unlabeled endoscopic video datawith self-supervised learning [J]. International Journal of Computer Assisted Radiology and Surgery, 2018,13(6): 925-933. [29] REDMON J, FARHADI A. YOLOv3: An incremental improvement [DB/OL]. (2018-04-18).https://arxiv.org/abs/1804.02767. [30] DENG J, DONG W, SOCHER R, et al. ImageNet:A large-scale hierarchical image database [C]//2009IEEE Conference on Computer Vision and PatternRecognition. Miami: IEEE, 2009: 248-255. [31] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: Towards real-time object detection with regionproposal networks [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2017, 39(6): 1137-1149. [32] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detectionand semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus: IEEE, 2014: 580-587. |
[1] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 160-167. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[5] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 757-764. |
[6] | MA Guohong (马国红), LI Jian (李健), HE Yinshui (何银水), XIAO Wenbo (肖文波). Weld Geometry Monitoring for Metal Inert Gas Welding Process with Galvanized Steel Plates Using Bayesian Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 239-244. |
[7] | PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688. |
[8] | QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552. |
[9] | ZHU Tao (朱涛), CHENG Chunling (程春玲). Joint CTC-Attention End-to-End Speech Recognition with a Triangle Recurrent Neural Network Encoder[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 70-75. |
[10] | ZHANG Jun* (张军), ZHAO Shenwei (赵申卫), WANG Yuanqiang (王远强), ZHU Xinshan (朱新山). Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 209-219. |
[11] | WANG Bo* (王 博), WAN Lei (万 磊), LI Ye (李 晔). Saliency Motivated Pulse Coupled Neural Network for Underwater Laser Image Segmentation[J]. 上海交通大学学报(英文版), 2016, 21(3): 289-296. |
[12] | ZHANG Wen-fen (张雯雰). Simplified Group Search Optimizer Algorithm for Large Scale Global Optimization[J]. 上海交通大学学报(英文版), 2015, 20(1): 38-43. |
[13] | MAO Li1 (毛力), SONG Yi-chun1* (宋益春), LI Yin1 (李引),YANG Hong2 (杨弘), XIAO Wei2 (肖炜). Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm[J]. 上海交通大学学报(英文版), 2015, 20(1): 51-55. |
[14] | SONG SONG Ya (宋亚), SHI Guo (石郭), CHEN Leyi (陈乐懿), HUANG Xinpei (黄鑫沛), XIA Tang. Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 85-94. |
[15] | ZHUO Pengcheng (卓鹏程), ZHU Ying (朱颖), WU Wenxuan (邬雯喧), SHU Junqing (舒俊清), XIA Ta. Real-Time Fault Diagnosis for Gas Turbine Blade Based on Output-Hidden Feedback Elman Neural Network[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 95-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||