[1] CHABOT F, CHAOUCH M, RABARISOA J, et al. Deep MANTA: A coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image [C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1827-1836.
[2] KUNDU A, LI Y, REHG J M. 3D-RCNN: Instance-level 3D object reconstruction via render-and-compare [C]//UT2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3559-3568.
[3] YOU Y R, WANG Y, CHAO W L, et al. PseudoLiDAR++: Accurate depth for 3D object detection in autonomous driving [EB/OL]. (2020-02-15) [2022-04-10]. https://arxiv.org/abs/1906.06310.
[4] RODDICK T, KENDALL A, CIPOLLA C. Orthographic feature transform for monocular 3D object detection [EB/OL]. (2018-11-20) [2022-04-10]. https://arxiv.org/abs/1811.08188.
[5] BRAZIL G, LIU X M. M3D-RPN: Monocular 3D region proposal network for object detection [C]//IEEE/CVF International Conference on Computer Vision (ICCV ). Seoul: IEEE, 2019: 9286-9295.
[6] ZHOU X Y, WANG D Q, KR?HENBüHL P. Objects as points [EB/OL]. (2019-04-25) [2022-04-10]. https://arxiv.org/abs/1904.07850.
[7] J?RGENSEN E, ZACH C, KAHL F. Monocular 3D object detection and box fitting trained end-to-end using intersection-over-union loss [EB/OL]. (2019-06-20)[2022-04-10]. https://arxiv.org/abs/1906.08070.
[8] WENG X S, WANG J R, HELD D, et al. 3D multi-object tracking: A baseline and new evaluation metrics [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas: IEEE, 2020: 10359-10366.
[9] PATIL A, MALLA S, GANG H M, et al. The H3D dataset for full-surround 3D multi-object detection and tracking in crowded urban scenes [C]//International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019: 9552-9557.
[10] OSEP A, MEHNER W, MATHIAS M, et al. Combined image- and world-space tracking in traffic scenes [C]//IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 1988-1995.
[11] DONG C Q, CHEN X W, DONG H B, et al. Research on intelligent vehicle infrastructure cooperative system based on Zigbee [C]//5th International Conference on Transportation Information and Safety (ICTIS). Liverpool: IEEE, 2019: 1337-1343.
[12] MAI X C, YANG M, WANG C X, et al. Multi-sensor fusion based vehicle detection and tracking method[J]. Journal of Shanghai Jiao Tong University, 2011, 45(7): 1012-1016 (in Chinese).
[13] CHEN Q, TANG S H, YANG Q, et al. Cooper: Cooperative perception for connected autonomous vehicles based on 3D point clouds [C]//IEEE 39th International Conference on Distributed Computing Systems. Dallas: IEEE, 2019: 514-524.
[14] NAPHADE M, TANG Z, CHANG M C, et al. The 2019 AI city challenge [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 452-460.
[15] LUNA E, SANMIGUEL J C, MART′INEZ J M, et al. Online clustering-based multi-camera vehicle tracking in scenarios with overlapping FOVs [J]. Multimedia Tools and Applications, 2022, 81(5): 7063-7083.
[16] MOUSAVIAN A, ANGUELOV D, FLYNN J, et al. 3D bounding box estimation using deep learning and geometry [C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5632-5640.
[17] LAW H, DENG J. CornerNet: Detecting objects as paired keypoints [J]. International Journal of Computer Vision volume, 2020, 128: 642-656.
[18] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [C]//2nd International Conference on Knowledge Discovery and Data Mining (KDD-96 ). Portland: AAAI, 1996: 226-231.
[19] KALMAN R E. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
[20] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric [C]//IEEE International Conference on Image Processing. Beijing: IEEE, 2017: 3645-3649.
[21] H?NEL M L, SCH?NLIEB C B. Efficient global optimization of non-differentiable, symmetric objectives for multi camera placement [J]. IEEE Sensors Journal, 2022, 22(6): 5278-5287.
[22] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite [C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354-3361.
[23] DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: An open urban driving simulator [C]//1st Conference on Robot Learning. Mountain View: PMLR, 2017: 1-16.
[24] BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: The CLEAR MOT metrics [J]. EURASIP Journal on Image and Video Processing, 2008, 2008: 246309.
[25] YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2403-2412.
|