J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (1): 61-69.doi: 10.1007/s12204-023-2569-z
收稿日期:
2022-06-23
出版日期:
2023-01-28
发布日期:
2023-02-10
CAO Bingquan1,2,3 (曹炳全), HE Yuesheng1,2,3∗ (贺越生), ZHUANG Hanyang4 (庄瀚洋), YANG Ming1,2,3 (杨 明)
Received:
2022-06-23
Online:
2023-01-28
Published:
2023-02-10
摘要: 准确的车辆定位是室内停车场自动驾驶任务的关键技术,例如自主代客泊车。与此同时,注重场端的协作式驾驶系统已成为实现智能驾驶的一条重要途径。本文提出了一种新颖且实用的车辆定位系统,该系统将场端RGB-D相机阵列用于室内停车场。在所提出的系统中,本文设计了一种兼具简便性与高效性的深度数据预处理方法,以减轻庞大数据量所带来的计算负担。同时,本系统未实现传感器网络中所有相机的硬件同步功能,这主要是考虑到其异常繁琐且会显著降低本系统在大规模部署中的可扩展性。因此,为了解决伴随车辆运动所带来的数据畸变问题,本文提出了一种通过在分布式深度数据之中进行模板点云配准的车辆定位方法。最后,本文在真实环境中搭建了一套完整的硬件系统,验证了本文方案的可行性。具体实验表明,与真值数据相比,本文方法可实现输出频率为15 Hz且最大均方根误差为5 cm的车辆定位效果,证明了本文所提出的车辆定位系统的有效性和准确性。
中图分类号:
. 基于场端RGB-D相机阵列的室内停车场车辆定位系统[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 61-69.
CAO Bingquan1,2,3 (曹炳全), HE Yuesheng1,2,3∗ (贺越生), ZHUANG Hanyang4 (庄瀚洋), YANG Ming1,2,3 (杨 明). Infrastructure-Based Vehicle Localization System for Indoor Parking Lot Using RGB-D Cameras[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 61-69.
[1] AGRAWAL P, IQBAL A, RUSSELL B, et al. PCESLAM: A real-time simultaneous localization and mapping using LiDAR data [C]//2017 IEEE Intelligent Vehicles Symposium. Los Angeles, CA: IEEE, 2017: 1752-1757. [2] HAN J, KIM J, SHIM D H. Precise localization and mapping in indoor parking structures via parameterized SLAM [J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(12): 4415-4426. [3] ZHAO H W, YANG M, HE Y S, et al. Time-of-flight camera based indoor parking localization leveraging Manhattan world regulation [C]//2020 IEEE Intelligent Vehicles Symposium. Las Vegas, NV: IEEE, 2020: 645-650. [4] YEKKEHFALLAH M, YANG M, CAI Z A, et al. Accurate 3D localization using RGB-TOF camera and IMU for industrial mobile robots [J]. Robotica, 2021, 39(10): 1816-1833. [5] HU J X, YANG M, XU H Q, et al. Mapping and localization using semantic road marking with centimeter-level accuracy in indoor parking lots [C]//2019 IEEE Intelligent Transportation Systems Conference. Auckland: IEEE, 2019: 4068-4073. [6] QIN T, CHEN T Q, CHEN Y L, et al. AVPSLAM: Semantic visual mapping and localization for autonomous vehicles in the parking lot [C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV: IEEE, 2020: 5939-5945. [7] EINSIEDLER J, RADUSCH I, WOLTER K. Vehicle indoor positioning: A survey [C]//2017 14th Workshop on Positioning, Navigation and Communications (WPNC ). Bremen: IEEE, 2017: 1-6. [8] ZHANG C, KUHN M, MERKL B, et al. Accurate UWB indoor localization system utilizing time difference of arrival approach [C]//2006 IEEE Radio and Wireless Symposium. San Diego, CA: IEEE, 2006: 515-518. [9] IBISCH A, STüMPER S, ALTINGER H, et al. Towards autonomous driving in a parking garage: Vehicle localization and tracking using environment-embedded LIDAR sensors [C]//2013 IEEE Intelligent Vehicles Symposium. Gold Coast, QLD: IEEE, 2013: 829-834. [10] IBISCH A, HOUBEN S, SCHLIPSING M, et al. Towards highly automated driving in a parking garage: General object localization and tracking using an environment-embedded camera system [C]//2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn, MI: IEEE, 2014: 426-431. [11] EINSIEDLER J, BECKER D, RADUSCH I. External visual positioning system for enclosed carparks [C]//2014 11th Workshop on Positioning, Navigation and Communication (WPNC ). Dresden: IEEE, 2014: 1-6. [12] KIM S T, FAN M, JUNG S W, et al. External vehicle positioning system using multiple fish-eye surveillance cameras for indoor parking lots [J]. IEEE Systems Journal, 2021, 15(4): 5107-5118. [13] DUQUE DOMINGO J, CERRADA C, VALERO E, et al. An improved indoor positioning system using RGB-D cameras and wireless networks for use in complex environments [J]. Sensors (Basel, Switzerland), 2017, 17(10): 2391. [14] HOFMANN C, PARTICKE F, HILLER M, et al. Object detection, classification and localization by infrastructural stereo cameras [C]//2019 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Prague: SciTePress, 2019: 808-815. [15] WANG Z, XU H, Lü N, et al. Dynamic obstacle avoidance for application of human-robot cooperative dispensing medicines [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(1): 24-35. [16] DUDA A, FRESE U. Accurate detection and localization of checkerboard corners for calibration [C]//2018 29th British Machine Vision Conference. Northumbria: BMVA, 2018: 1-10. [17] HESCH J A, ROUMELIOTIS S I. A direct least squares (DLS) method for PnP [C]//2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 383-390. [18] FISCHLER M A, BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography [M]//FOLEY J D. Foley readings in computer vision. San Mateo, CA: Morgan Kaufmann, 1987: 726-740. [19] SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP [C]//2008 4th Robotics: Science and Systems. Zurich: MIT Press, 2009: 435. [20] KOIDE K, YOKOZUKA M, OISHI S, et al. Voxelized GICP for fast and accurate 3D point cloud registration [C]//2021 IEEE International Conference on Robotics and Automation. Xi’an: IEEE, 2021: 11054-11059. |
[1] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[2] | 李舒逸, 李旻哲, 敬忠良. 动态环境下基于改进DQN的多智能体路径规划方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[3] | 赵英策1,张广浩2,邢正宇2,李建勋2. 面向确定进攻对手策略的层次强化学习对抗算法研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
[4] | . 外参标定的激光-视觉-惯性里程计[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 70-76. |
[5] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 602-613. |
[6] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 552-560. |
[7] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 570-578. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||