J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (4): 505-511.doi: 10.1007/s12204-022-2420-y
收稿日期:
2020-11-24
出版日期:
2022-07-28
发布日期:
2022-08-11
LIU Xinrui 1 (刘信锐), ZHANG Qianwen1 (张骞文), WANG Ying2 (王 莹), CHEN Fujun1,3∗ (陈福俊)
Received:
2020-11-24
Online:
2022-07-28
Published:
2022-08-11
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 505-511.
LIU Xinrui 1 (刘信锐), ZHANG Qianwen1 (张骞文), WANG Ying2 (王 莹), CHEN Fujun1,3∗ (陈福俊). Electrophysiological Characterization of Substantia Nigra Pars Reticulata in Anesthetized Rats[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 505-511.
[1] | ZHOU F M, LEE C R. Intrinsic and integrative properties of substantia nigra pars reticulata neurons [J].Neuroscience, 2011, 198: 69-94. |
[2] | CONDé H. Organization and physiology of the substantia nigra [J]. Experimental Brain Research, 1992,88(2): 233-248. |
[3] | RICHARDS C D, SHIROYAMA T, KITAI S T. Elec-Trophysio logical and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat [J]. Neuroscience, 1997, 80(2):545-557. |
[4] | DENIAU J M, MAILLY P, MAURICE N, et al. Thepars reticulata of the substantia nigra: A window to basal Ganglia output [J]. Progress in Brain Research,2007, 160: 151-172. |
[5] | M A C L E O D N K , J A M E S T A , K I L P A T R I C K I C , e tal. Evidence for a GABAergic nigrothalamic pathwayin the rat. II. Electrophysiological studies [J]. Experimental Brain Research, 1980, 40(1): 55-61. |
[6] | FRIEND D M, KRA VITZ A V. Working together:Basal Ganglia pathways in action selection [J]. Trendsin Neurosciences, 2014, 37(6): 301-303. |
[7] | H I K O S A K A O , K I M H F , Y A S U D A M , e t a l . B a s a lGanglia circuits for reward value-guided behavior [J].Annual Review of Neuroscience, 2014, 37: 289-306. |
[8] | SCHOLTEN M, KLEMT J, HEILBRONN M, et al.Effects of subthalamic and nigral stimulation on gaitkinematics in Parkinson’s disease [J]. Frontiers in Neurology, 2017, 8: 543-543. |
[9] | WINDELS F, KIYATKIN E A. GABAergic mechanisms in regulating the activity state of substantianigra pars reticulata neurons [J]. Neuroscience, 2006,140(4): 1289-1299. |
[10] | W ANG Y, ZHANG Q J, LIU J, et al. Changes in firingrate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinson’s disease [J]. Brain Research, 2010, 1324:54-63. |
[11] | DENIAU J M, CHEV ALIER G. The lamellar organization of the rat substantia nigra pars reticulata: Distribution of projection neurons [J]. Neuroscience, 1992,46(2): 361-377. |
[12] | WILTSCHKO A B, GAGE G J, BERKE J D. Wavelet filtering before spike detection preserves wave form shape and enhances single-unit discrimination [J].Journal of Neuroscience Methods, 2008, 173(1): 34-40. |
[13] | REY H G, PEDREIRA C, QUIAN QUIROGA R.Past, present and future of spike sorting techniques[J]. Brain Research Bulletin, 2015, 119: 106-117. |
[14] | TAUBE J S. Interspike interval analyses reveal irregular firing patterns at short, but not long, intervals inrat head direction cells [J]. Journal of Neurophysiology,2010, 104(3): 1635-1648. |
[15] | WEIR K, BLANQUIE O, KILB W, et al. Comparison of spike parameters from optically identified GABAer-gic and glutamatergic neurons in sparse cortical cultures [J]. Frontiers in Cellular Neuroscience, 2015, 8:460. |
[16] | MAURICE N, THIERRY A M, GLOWINSKI J, et al.Spontaneous and evoked activity of substantia nigrapars reticulata neurons during high-frequency stimulation of the subthalamic nucleus [J]. Journal of Neuroscience, 2003, 23(30): 9929-9936. |
[17] | SANO H, CHIKEN S, HIKIDA T, et al. Signalsthrough the striatopallidal indirect pathway stopmovements by phasic excitation in the substantia nigra[J]. Journal of Neuroscience, 2013, 33(17): 7583-7594. |
[18] | MURER M G, RIQUELME L A, TSENG K Y, et al.Substantia nigra pars reticulata single unit activity innormal and 60HDA-lesioned rats: Effects of intrastriatal apomorphine and subthalamic lesions [J]. Synapse,1997, 27(4): 278-293. |
[19] | HUH Y, CHO J. Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes [J]. Frontiers in Behavioral Neuroscience, 2013, 7: 141. |
[20] | HARA K, HARRIS R A. The anesthetic mechanism ofurethane: The effects on neurotransmitter-gated ion channels [J]. Anesthesia and Analgesia, 2002, 94(2):313-318. |
[21] | DAYAL V, LIMOUSIN P, FOLTYNIE T. Subthalamicnucleus deep brain stimulation in Parkinson’s disease:The effect of varying stimulation parameters [J]. Journal of Parkinson ’s Disease, 2017, 7(2): 235-245. |
[22] | THEV ATHASAN W, DEBU B, AZIZ T, et al. Pedun-culopontine nucleus deep brain stimulation in Parkin-son’s disease: A clinical review [J]. Movement Disorders, 2018, 33(1): 10-20. |
[23] | CASTRIOTO A, MORO E. New targets for deep brain stimulation treatment of Parkinson’s disease [J]. Ex-pert Review of Neurotherapeutics, 2013, 13(12): 1319-1328. |
[24] | FOLLETT K A, TORRES-RUSSOTTO D. Deep brain stimulation of globus pallidus interna, subthalamic nucleus, and pedunculopontine nucleus for Parkinson’s disease: Which target? [J]. Parkinsonism and Related Disorders, 2012, 18 (Sup.1): S165-S167. |
[25] | BROSIUS S N, GONZALEZ C L, SHURESH J, et al.Reversible improvement in severe freezing of gait from Parkinson’s disease with unilateral interleaved subtha-lamic brain stimulation [J]. Parkinsonism and Related Disorders, 2015, 21(12): 1469-1470. |
[26] | DOR V AL A D, GRILL W M. Deep brain stimulation of the subthalamic nucleus reestablishes neuronal in-formation transmission in the 6-OHDA rat model of Parkinsonism [J]. Journal of Neurophysiology, 2014,111(10): 1949-1959. |
[27] | LI H, MCCONNELL G C. Intraoperative microelec-trode recordings in substantia nigra pars reticulata inanesthetized rats [J]. Frontiers in Neuroscience, 2020,14: 367. |
[28] | HOWELL B, GRILL W M. Evaluation of high-perimeter electrode designs for deep brain stimulation [J]. Journal of Neural Engineering, 2014, 11(4):046026. |
[29] | AKEJU O, BROWN E N. Neural oscillations demonstrate that general anesthesia and sedative states areneuro physiologically distinct from sleep [J]. Current Opinion in Neurobiology, 2017, 44: 178-185. |
[30] | LEWIS L D, CHING S, WEINER V S, et al. Localcortical dynamics of burst suppression in the anaes-thetized brain [J]. Brain, 2013, 136(9): 2727-2737. |
[31] | AKEJU O, SONG A H, HAMILOS A E, et al. Elec-troencephalogram signatures of ketamine anesthesia-induced unconsciousness [J]. Clinical Neurophysiology,2016, 127(6): 2414-2422. |
[32] | C H E R Y R , G U R D E N H , M A R T I N C . A n e s t h e t i cregimes modulate the temporal dynamics of local field potential in the mouse olfactory bulb [J]. Journal of Neurophysiology, 2014, 111(5): 908-917. |
[33] | HOMAYOUN H, MOGHADDAM B. NMDA receptorhypo function produces opposite effects on prefrontal cortex interneurons and pyramidal neurons [J]. Journal of Neuroscience, 2007, 27(43): 11496-11500. |
[34] | R A Y S , H S I A O S S , C R O N E N E , e t a l . Effect of stimulus intensity on the spike-local field potential relationship in the secondary somatosensory cortex [J].Journal of Neuroscience, 2008, 28(29): 7334-7343. |
[35] | PARASTARFEIZABADI M, KOUZANI A Z. Advances in closed-loop deep brain stimulation devices[J]. Journal of Neuro engineering and Rehabilitation,2017, 14(1): 79. |
[36] | HABETS J G V, HEIJMANS M, KUIJF M L, et al. An update on adaptive deep brain stimulation in Parkin-son’s disease [J]. Movement Disorders, 2018, 33(12):1834-1843. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||