Journal of Shanghai Jiao Tong University(Science) ›› 2020, Vol. 25 ›› Issue (5): 674-680.doi: 10.1007/s12204-020-2205-0
• • 上一篇
JIN Yunyun, SONG Yang, LIU Yongzhuang, HOU Weiyan
出版日期:
2020-10-28
发布日期:
2020-09-11
通讯作者:
SONG Yang (宋杨)
E-mail:y_song@shu.edu.cn
JIN Yunyun, SONG Yang, LIU Yongzhuang, HOU Weiyan
Online:
2020-10-28
Published:
2020-09-11
Contact:
SONG Yang (宋杨)
E-mail:y_song@shu.edu.cn
摘要: Switching Markov jump linear system (SMJLS), a special hybrid system, has attracted a lot of studies
recently. SMJLS is governed by stochastic and deterministic commutations. This paper focuses on the switching
strategy which stabilizes the SMJLS in a finite time interval in order to further expand the existing results
and investigate new aspects of such systems. Several sufficient conditions for finite-time stability of discrete-time
SMJLS are provided, and the numerical problems in these sufficient conditions are solved by solving linear matrix
inequalities (LMIs). Finally, numerical examples are given to show the feasibility and effectiveness of the results.
中图分类号:
JIN Yunyun, SONG Yang, LIU Yongzhuang, HOU Weiyan . Finite-Time Stability and Stabilization of Discrete-Time Switching Markov Jump Linear System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 674-680.
JIN Yunyun, SONG Yang, LIU Yongzhuang, HOU Weiyan . Finite-Time Stability and Stabilization of Discrete-Time Switching Markov Jump Linear System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 674-680.
[1] | FENGW, ZHANG J F. Mean square stabilization control of switched systems with stochastic disturbances [C]//43rd IEEE Conference on Decision and Control(CDC). Nassau, Bahamas: IEEE, 2004: 3714-3719. |
[2] | BRANICKY M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J]. IEEE Transactions on Automatic Control, 1998,43(4): 475-482. |
[3] | CHENG D Z, GUO L, LIN Y D, et al. Stabilization of switched linear systems [J]. IEEE Transactions on Automatic Control, 2005, 50(5): 661-666. |
[4] | HESPANHA J P, MORSE A S. Stability of switched systems with average dwell-time [C]//Proceedings of the 38th IEEE Conference on Decision and Control.Phoenix. AZ, USA: IEEE, 2002: 2655-2660. |
[5] | LIBERZON D, HESPANHA J P, MORSE A S. Stability of switched systems: a Lie-algebraic condition [J].Systems & Control Letters, 1999, 37(3): 117-122. |
[6] | SHORTEN R N, NARENDRA K S. On the stability and existence of common Lyapunov functions for stable linear switching systems [C]//Proceedings of the 37th IEEE Conference on Decision and Control.Tampa, FL, USA: IEEE, 1998: 3723-3724. |
[7] | DAAFOUZ J, RIEDINGER P, IUNG C. Stability analysis and control synthesis for switched systems:a switched Lyapunov function approach [J]. IEEE Transactions on Automatic Control, 2002, 47(11):1883-1887. |
[8] | EL-FARRA N H, CHRISTOFIDES P D. Switching and feedback laws for control of constrained switched nonlinear systems [M]//Hybrid systems: Computation and control. Berlin, Heidelberg: Springer, 2002, 164-178. |
[9] | FERRON K E. Quadratic stabilizability of switched systems via state and output feedback [R]. Cambridge,USA: MIT Center for Intelligent Control Systems,1996: 1-13. |
[10] | GIUA A, SEATZU C, VAN DER MEE C. Optimal control of switched autonomous linear systems[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, FL, USA: IEEE, 2001:2472-2477. |
[11] | SKAFIDAS E, EVANS R J, MAREELS I M Y, et al. Optimal controller switching for stochastic systems[M]//Hyrbrid system V. Berlin, Heidelberg: Springer,1999: 341-355. |
[12] | ZHANG L X, BOUKAS E K, BARON L. Fault detection for discrete-time Markov jump linear systems with partially known transition probabilities [C]//47th IEEE Conference on Decision and Control. Cancun,Mexico: IEEE, 2008: 1054-1059. |
[13] | BOLZERN P, COLANERI P, DE NICOLAO G. Almost sure stability of continuous-time Markov jump linear systems: A randomized approach [J]. IFAC Proceedings Volumes, 2005, 38(1): 7-12. |
[14] | HUANG J, SHI Y, ZHANG X. Active fault tolerant control systems by the semi-Markov model approach [J]. International Journal of Adaptive Control and Signal Processing, 2014, 28(9): 833-847. |
[15] | BOLZERN P, COLANERI P, DE NICOLAO G.Stochastic stability of positive Markov jump linear systems[J]. Automatica, 2014, 50(4): 1181-1187. |
[16] | XIAO N, XIE L H, FU M Y. Stabilization of Markov jump linear systems using quantized state feedback [J].Automatica, 2010, 46(10): 1696-1702. |
[17] | FANG Y G, LOPARO K A. Stabilization of continuous-time jump linear systems [J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1590-1603. |
[18] | SONG Y, DONG H, YANG T C, et al. Almost sure stability of discrete-time Markov jump linear systems[J]. IET Control Theory & Applications, 2014, 8(11):901-906. |
[19] | DOCOSTAOL V, MARQUESR P, FRAGOSOMD.Discrete-time Markov jump linear systems [M]. London:Springer, 2005. |
[20] | DORATO P. Short time stability in linear time-varying systems [C]//Proceedings of the IRE International Convention Record. New York: Polytechnic Institute of Brooklyn, 1961: 83-87. |
[21] | WEISS L, INFANTE E F. Finite time stability under perturbing forces and on product spaces [J]. IEEE Transactions on Automatic Control, 1967, 12(1): 54-59. |
[22] | DULLERUD G E, LALL S G. Analysis and synthesis tools for time-varying systems [C]//Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, CA, USA: IEEE, 1997: 4543-4548. |
[1] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 375-382. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 393-401. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 847-856. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 626-633. |
[5] | ZHANG Lulu (章露露), DONG Xiangxiang (董祥祥), YAO Lixiu (姚莉秀), CAI Yunze (蔡云泽). Velocity-Varying Target Tracking of Mobile Sensor Network Based on Flocking Control[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 446-453. |
[6] | JIN Yudong (靳宇栋), FENG Jiabo (冯家波), ZHANG Weijun (张伟军). UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 431-445. |
[7] | XU Changbiao, WU Xia, HE Yinghui, MO Yunhui . 5D Hyper-Chaotic System with Multiple Types of Equilibrium Points[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(5): 639-649. |
[8] | QIAN Yuan, FENG Zhengping, BI Anyuan, LIU Weiqi . T-S Fuzzy Model-Based Depth Control of Underwater Vehicles[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 315-324. |
[9] | LI Jie (李杰), LIU Yongzhi (刘勇智), SHAN Chenglong (鄯成龙), DAI Cong (戴聪). Implementation of Simplified Fractional-Order PID Controller Based on Modified Oustaloup's Recursive Filter[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 44-50. |
[10] | YANG Chunyu (杨春雨), CHE Zhiyuan (车志远), ZHOU Linna (周林娜) . Composite Feedforward Compensation for Force Ripple in Permanent Magnet Linear Synchronous Motors[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 782-788. |
[11] | MENG Yu *(孟宇), GAN Xin (甘鑫), WANG Yu (汪钰), GU Qing (顾青). LQR-GA Controller for Articulated Dump Truck Path Tracking System[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 78-85. |
[12] | ZHANG Liang (张梁), BAO Qilian *(鲍其莲), CUI Ke (崔科), JIANG Yaodong (蒋耀东), XU Haigu. Particle Filter and Its Application in the Integrated Train Speed Measurement[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 130-136. |
[13] | YANG Qing (杨轻), YANG Zhong (杨忠), HU Guoxiong (胡国雄), DU Wei (杜威). A New Fusion Chemical Reaction Optimization Algorithm Based on Random Molecules for Multi-Rotor UAV Path Planning in Transmission Line Inspection[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 671-677. |
[14] | YUE Caichenga (岳才成), CHEN Hongbina (陈红彬), QIAN Linfanga (钱林方), KONG Jianshoub (孔. Adaptive Sliding-Mode Tracking Control for an Uncertain Nonlinear SISO Servo System with a Disturbance Observer[J]. sa, 2018, 23(3): 376-. |
[15] | WEI Jianming1* (韦建明), ZHANG Youan2 (张友安), LIU Jingmao3 (刘京茂). Observer-Based Adaptive Neural Iterative Learning Control for a Class of Time-Varying Nonlinear Systems[J]. 上海交通大学学报(英文版), 2017, 22(3): 303-312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||