Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (6): 754-762.doi: 10.1007/s12204-019-2122-2
NKONDE Sampa, JIANG Chun (姜淳)
出版日期:
2019-12-15
发布日期:
2019-12-07
通讯作者:
NKONDE Sampa
E-mail:nkondes@sjtu.edu.cn
NKONDE Sampa, JIANG Chun (姜淳)
Online:
2019-12-15
Published:
2019-12-07
Contact:
NKONDE Sampa
E-mail:nkondes@sjtu.edu.cn
摘要: We present a cascaded system designed with Er3+-doped, Tm3+-doped and Nd3+-doped fibers to realize amplified spontaneous emission (ASE) spectra covering 0.4—2.0 μm. The system is excited with a pump laser emitting 808 nm photons with 500mW pump power. The emission spectra of the cascaded system covering 0.4—2.0 μm are realized with the Er3+, Tm3+ and Nd3+ ion doping densities optimized to 8 × 1019, 2 × 1020 and 8 × 1020 ion/m3, respectively, and the fiber length optimized to 1 m. Numerical methods reveal that the peak ASE power for the cascaded system can reach 20.9mW. A minimum ASE power of 4.39mW is attainable. Using numerical calculations and analytical techniques, we provide a detailed insight into optimized Er3+-doped, Tm3+- doped and Nd3+-doped fiber lengths and their doping concentrations for ASE power spectra covering 0.4—2.0 μm. We believe that the cascaded system can potentially provide significant applications in various optical fields which include but not limited to wavelength-division multiplexing, various optical communications and other salient medical imaging processes.
中图分类号:
NKONDE Sampa, JIANG Chun (姜淳). Theoretical Modelling of Cascaded Er3+-Doped, Tm3+-Doped and Nd3+-Doped Fibers for 0.4 to 2.0 μm Emission Spectra[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 754-762.
NKONDE Sampa, JIANG Chun (姜淳). Theoretical Modelling of Cascaded Er3+-Doped, Tm3+-Doped and Nd3+-Doped Fibers for 0.4 to 2.0 μm Emission Spectra[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 754-762.
[12] | ALLEN R, ESTEROWITZ L, AGGARWAL I. An efficient1.46 μm thulium fiber laser via a cascade process[J]. IEEE Journal of Quantum Electronics, 1993,29(2): 303-306. |
[1] | MEARS R J, REEKIE L, JAUNCEY I M, et al.Low-noise erbium-doped fiber amplifier operating at1.54 μm [J]. Electronics Letters, 1987, 23(19): 1026-1028. |
[13] | EICHHORN M. Numerical modeling of Tm-dopeddouble-clad fluoride fiber amplifiers [J]. IEEE Journalof Quantum Electronics, 2005, 41(12): 1574-1581. |
[2] | DESURVIRE E, SIMPSON J R, BECKER P C. Highgainerbium-doped travelling-wave fiber amplifier [J].Optics Letters, 1987, 12(11): 888-890. |
[14] | BASTOS-FILHO C J A, MARTINS-FILHO J F,GOMES A S L. 38 dB gain from double-pass singlepumpthulium doped fiber amplifier [C]//IEEE Microwaveand Optoelectronics Conference. Foz doIguacu, Brazil: IEEE, 2003: 125-128. |
[3] | AGRAWAL G P. Fiber-optic communication systems[M]. 4th ed. New York, USA: Wiley, 2010. |
[15] | PETERKA P, FAURE B, BLANCE W, et al. Theoreticalmodelling of S-band thulium-doped silica fibreamplifiers [J]. Optical and Quantum Electronics, 2004,36(1/2/3): 201-212. |
[4] | DIGONNET M J F. Rare-earth-doped fiber lasersand amplifiers [M]. 2nd ed. New York, USA: MarcelDekker, Inc., 2001. |
[16] | KASAMATSU T, YANO Y, ONO T. 1.49-μm-bandgain-shifted thulium-doped fiber amplifier for WDMtransmission systems [J]. Journal of Lightwave Technology,2002, 20(10): 1826-1838. |
[5] | FLORIDIA C, CARVALHO M T, L¨UTHI S R, et al.Modeling the distribution gain of single- (1 050 nm or1 410 nm) and dual-wavelength (800 nm+1050 nm or800nm+1410 nm) pumped thulium-doped fiber amplifiers[J]. Optics Letters, 2004, 29(17): 1983-1985. |
[17] | SAKAMOTO T. S-band fiber optical amplifiers[C]//Optical Fiber Communication Conference. Anaheim,California, USA: Optical Society of America,2001: TuQ1. |
[6] | ZHU B, NELSON L E, STULZ S, et al. 6.4-Tb/s(160×42.7Gb/s) transmission with 0.8 bit/s/Hz spectralefficiency over 32 × 100 km of fiber using CSRZDPSKformat [C]//Optical Fiber Communication Conference.Atlanta, Georgia, USA: Optical Society ofAmerica, 2003: PD19. |
[18] | CARTER J N, SMART R G, TROPPER A C, et al.Thulium-doped fluorozirconate fiber lasers [J]. Journalof Non-Crystalline Solid, 1992, 140: 10-15. |
[7] | KEISER G. Optical fiber communications [M]. 2nd ed.Singapore: McGraw Hill Companies Inc, 1991. |
[19] | JACKSON S D, KING T A. Theoretical modeling ofTm-doped silica fiber lasers [J]. Journal of LightweightTechnology, 1999, 17(5): 948-956. |
[8] | ROY F, BANIEL P, FAGES C, et al. Optimal pumpingschemes for gain-band management for thuliumdopedfiber amplifiers [C]//Optical Fiber CommunicationConference. Anaheim, California, USA: OpticalSociety of America, 2001: TuQ7. |
[20] | ZEMON S, PEDERSON G, LAMBERT G, et al. Excitedstate absorption cross section and amplifier modellingin the 1300nm region of Nd-doped glasses [J].IEEE Photonics Technology Letters, 1992, 4(3): 244-247. |
[9] | HOSSAIN N, NAJI AW, MISHRA V, et al. Numericalanalysis and optimization of remotely pumped doublepass erbium doped fiber amplifier [J]. IEICE ElectronicsExpress, 2007, 4(5): 172-178. |
[21] | ZEMON S, PEDERSEN G, LAMBERT G, et al.Excited-state-absorption cross sections and amplifiermodeling in the 1 300-nm region for Nd-doped glasses[J]. IEEE Photonics Technology Letters, 1992, 4(3):244-247. |
[10] | MINISCALCO W J. Rare earth doped fiber lasersand amplifiers: Optical and electronic properties ofrare earth ions in glasses [M]. New York, USA: MarcelDekker, 1993. |
[22] | MINISCALCOW J. Rare-earth-doped fiber lasers andamplifiers: Optical and electronic properties of rareearth ions in glasses [M]. 2nd ed. New York, USA: MarcelDekker, Inc., 2001. |
[11] | YAM S S H, KIM J. Ground state absorption inthulium-doped fiber amplifier: Experiment and modeling[J]. IEEE Journal of Selected Topics in QuantumElectronics, 2006, 12(4): 797-803. |
[23] | MCCUMBER D E. Einstein relations connectingbroadband emission and absorption spectra[J].Physical Revision A, 1964, 136(4): 954-957. |
[12] | ALLEN R, ESTEROWITZ L, AGGARWAL I. An efficient1.46 μm thulium fiber laser via a cascade process[J]. IEEE Journal of Quantum Electronics, 1993,29(2): 303-306. |
[24] | GILES C R, DESURVIRE E. Propagation of signaland noise in concatenated erbium-doped fiber opticalamplifiers [J]. Journal of Lightwave Technology, 1991,9(2): 147-154. |
[13] | EICHHORN M. Numerical modeling of Tm-dopeddouble-clad fluoride fiber amplifiers [J]. IEEE Journalof Quantum Electronics, 2005, 41(12): 1574-1581. |
[25] | OLSHANSKY R. Noise figure for erbium-doped opticalfiber amplifiers [J]. Electronics Letters, 1988,24(22): 1363-1364. |
[14] | BASTOS-FILHO C J A, MARTINS-FILHO J F,GOMES A S L. 38 dB gain from double-pass singlepumpthulium doped fiber amplifier [C]//IEEE Microwaveand Optoelectronics Conference. Foz doIguacu, Brazil: IEEE, 2003: 125-128. |
[26] | MACLOED H A. Thin-film optical filters [M]. 4th ed.Boca Raton, FL, USA: Taylor and Francis Group,2010. |
[15] | PETERKA P, FAURE B, BLANCE W, et al. Theoreticalmodelling of S-band thulium-doped silica fibreamplifiers [J]. Optical and Quantum Electronics, 2004,36(1/2/3): 201-212. |
[27] | KNITTL Z, Optics of thin films [M]. London, UK: Wiley,1976. |
[16] | KASAMATSU T, YANO Y, ONO T. 1.49-μm-bandgain-shifted thulium-doped fiber amplifier for WDMtransmission systems [J]. Journal of Lightwave Technology,2002, 20(10): 1826-1838. |
[17] | SAKAMOTO T. S-band fiber optical amplifiers[C]//Optical Fiber Communication Conference. Anaheim,California, USA: Optical Society of America,2001: TuQ1. |
[18] | CARTER J N, SMART R G, TROPPER A C, et al.Thulium-doped fluorozirconate fiber lasers [J]. Journalof Non-Crystalline Solid, 1992, 140: 10-15. |
[19] | JACKSON S D, KING T A. Theoretical modeling ofTm-doped silica fiber lasers [J]. Journal of LightweightTechnology, 1999, 17(5): 948-956. |
[20] | ZEMON S, PEDERSON G, LAMBERT G, et al. Excitedstate absorption cross section and amplifier modellingin the 1300nm region of Nd-doped glasses [J].IEEE Photonics Technology Letters, 1992, 4(3): 244-247. |
[21] | ZEMON S, PEDERSEN G, LAMBERT G, et al.Excited-state-absorption cross sections and amplifiermodeling in the 1 300-nm region for Nd-doped glasses[J]. IEEE Photonics Technology Letters, 1992, 4(3):244-247. |
[22] | MINISCALCOW J. Rare-earth-doped fiber lasers andamplifiers: Optical and electronic properties of rareearth ions in glasses [M]. 2nd ed. New York, USA: MarcelDekker, Inc., 2001. |
[23] | MCCUMBER D E. Einstein relations connectingbroadband emission and absorption spectra[J].Physical Revision A, 1964, 136(4): 954-957. |
[24] | GILES C R, DESURVIRE E. Propagation of signaland noise in concatenated erbium-doped fiber opticalamplifiers [J]. Journal of Lightwave Technology, 1991,9(2): 147-154. |
[25] | OLSHANSKY R. Noise figure for erbium-doped opticalfiber amplifiers [J]. Electronics Letters, 1988,24(22): 1363-1364. |
[26] | MACLOED H A. Thin-film optical filters [M]. 4th ed.Boca Raton, FL, USA: Taylor and Francis Group,2010. |
[27] | KNITTL Z, Optics of thin films [M]. London, UK: Wiley,1976. |
[1] | NKONDE Sampa, JIANG Chun (姜淳). Lasing Frequency Up-Conversion by Using Thermal Population[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 579-583. |
[2] | NKONDE Sampa, JIANG Chun (姜淳). Modeling Nd3+-Yb3+-Tm3+-Er3+ Codoped Telluride Glass Fiber for 0.4 to 2.0 μm Emission Spectra[J]. sa, 2018, 23(3): 352-. |
[3] | YIN Jinpeng1 (尹金鹏), GAO Wenyuan1* (高文元), HAO Liping1 (郝丽萍), LIU Guishan1 (刘贵山),. Theoretical Analysis of Er3+-Doped Telluride Glass Fiber Amplifier for 2.700 μm Laser Amplification[J]. 上海交通大学学报(英文版), 2017, 22(5): 513-516. |
[4] | ABDALLA Saadelnour, JIANG Chun* (姜淳). Gain and Emission Spectrum Characteristics of 465 nm Laser Diode Pumped Tm3+-Doped Telluride Glass Fibers[J]. 上海交通大学学报(英文版), 2017, 22(4): 402-405. |
[5] | YIN Jinpeng (尹金鹏), GAO Wenyuan* (高文元), LIU Guishan (刘贵山),HAO Hongshun (郝洪顺), YAN. Gain and Noise Figure Analysis of Er3+-Doped YAG Transparent Ceramic Microchip Amplifier[J]. 上海交通大学学报(英文版), 2017, 22(4): 406-410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||