Journal of Shanghai Jiao Tong University (Science) ›› 2019, Vol. 24 ›› Issue (2): 262-272.doi: 10.1007/s12204-018-1995-9
• • 上一篇
WANG Menghan* (王梦寒), XIAO Guiqian (肖贵乾), WANG Jinqiang (王晋强), LI Zhi (李志)
出版日期:
2019-04-30
发布日期:
2019-04-01
通讯作者:
WANG Menghan* (王梦寒)
E-mail:cquwmh@163.com
WANG Menghan* (王梦寒), XIAO Guiqian (肖贵乾), WANG Jinqiang (王晋强), LI Zhi (李志)
Online:
2019-04-30
Published:
2019-04-01
Contact:
WANG Menghan* (王梦寒)
E-mail:cquwmh@163.com
摘要: Clinching is a convenient and efficient cold forming process that can join two sheets without any additional part. This study establishes an intelligent system for optimizing the clinched joint. Firstly, a mathematical model which introduces the ductile damage constraint to prevent cracking during clinching process is proposed. Meanwhile, an optimization methodology and its corresponding computer program are developed by integrated finite element model (FEM) and genetic algorithm (GA) approach. Secondly, Al6061-T4 alloy sheets with a thickness of 1.4mm are used to verify this optimization system. The optimization program automatically acquires the largest axial strength which is approximately equal to 872N. Finally, sensitivity analysis is implemented, in which the influence of geometrical parameters of clinching tools on final joint strength is analyzed. The sensitivity analysis indicates the main parameters to influence joint strength, which is essential from an industrial point of view.
中图分类号:
WANG Menghan* (王梦寒), XIAO Guiqian (肖贵乾), WANG Jinqiang (王晋强), LI Zhi (李志). Optimization of Clinching Tools by Integrated Finite Element Model and Genetic Algorithm Approach[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 262-272.
WANG Menghan* (王梦寒), XIAO Guiqian (肖贵乾), WANG Jinqiang (王晋强), LI Zhi (李志). Optimization of Clinching Tools by Integrated Finite Element Model and Genetic Algorithm Approach[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 262-272.
[1] | VARIS J P, LEPIST¨O J. A simple testing-based procedureand simulation of the clinching process using finiteelement analysis for establishing clinching parameters[J]. Thin-Walled Structures, 2003, 41(8): 691-709. |
[2] | HAMEL V, ROELANDT J M, GACEL J N, et al.Finite element modeling of clinch forming with automaticremeshing [J]. Computers and Structures, 2000,77(2): 185-200. |
[3] | COPPIETERS S, LAVA P, BAES S, et al. Analyticalmethod to predict the pull-out strength of clinchedconnections [J]. Thin-Walled Structures, 2012, 52(1):42-52. |
[4] | COPPIETERS S, LAVA P, HECKE R V, et al. Numericaland experimental study of the multi-axial quasistaticstrength of clinched connections [J]. InternationalJournal of Material Forming, 2012, 6(4): 437-451. |
[5] | LAMBIASE F, ILIO A D. Damage analysis in mechanicalclinching: Experimental and numerical study[J]. Journal of Materials Processing Technology, 2016,230: 109-120. |
[6] | COPPIETERS S, COOREMAN S, LAVA P, et al.Reproducing the experimental pull-out and shearstrength of clinched sheet metal connections usingFEA [J]. International Journal of Material Forming,2010, 4(4): 429-440. |
[7] | OUDJENE M, BEN-AYED L. On the parametricalstudy of clinch joining of metallic sheets using theTaguchi method [J]. Engineering Structures, 2008,30(6): 1782-1788. |
[8] | LAMBIASE F, ILIO A D. Optimization of the clinchingtools by means of integrated FE modeling and artificialintelligence techniques [J]. Procedia CIRP, 2013,12: 163-168. |
[9] | ROUX E, BOUCHARD P O. Kriging metamodelglobal optimization of clinching joining processes accountingfor ductile damage [J]. Journal of MaterialsProcessing Technology, 2013, 213(7): 1038-1047. |
[10] | SUN X, KHALEEL M A. Performance optimizationof self-piercing rivets through analytical rivet strengthestimation [J]. Journal of Manufacturing Processes,2005, 7(1): 83-93. |
[11] | OUDJENE M, BEN-AYED L, DELAM′EZI`ERE A, etal. Shape optimization of clinching tools using the responsesurface methodology with moving least-squareapproximation [J]. Journal of Materials ProcessingTechnology, 2009, 209(1): 289-296. |
[12] | LEBAAL N, OUDJENE M, ROTH S. The optimaldesign of sheet metal forming processes: Applicationto the clinching of thin sheets [J]. International Journalof Computer Applications in Technology, 2012, 43(2):110-116. |
[13] | LEE C J, KIM J Y, LEE S K, et al. Design of mechanicalclinching tools for joining of aluminium alloy sheets[J]. Materials and Design, 2010, 31(4): 1854-1861. |
[14] | LEE C J, KIM J Y, LEE S K, et al. Parametric studyon mechanical clinching process for joining aluminumalloy and high-strength steel sheets [J]. Journal of MechanicalScience and Technology, 2010, 24(1): 123-126. |
[15] | GERSTMANN T, AWISZUS B. Recent developmentsin flat-clinching [J]. Computational Materials Science,2014, 81(2): 39-44. |
[16] | HAMBLI R, RESZKA M. Fracture criteria identificationusing an inverse technique method and blankingexperiment [J]. International Journal of MechanicalSciences, 2002, 44(7): 1349-1361. |
[17] | CHEN C, ZHAO S D, HAN X L, et al. Optimization ofa reshaping rivet to reduce the protrusion height andincrease the strength of clinched joints [J]. Journal ofMaterials Processing Technology, 2016, 234: 1-9. |
[18] | LEE C J, LEE J M, RYU H Y, et al. Design of hole-clinching process for joining of dissimilar materialsAl6061-T4 alloy with DP780 steel, hot-pressed22MnB5 steel, and carbon fiber reinforced plastic[J]. Journal of Materials Processing Technology, 2014,214(10): 2169-2178. |
[1] | LI Jie (李杰), LIU Yongzhi (刘勇智), SHAN Chenglong (鄯成龙), DAI Cong (戴聪). Implementation of Simplified Fractional-Order PID Controller Based on Modified Oustaloup's Recursive Filter[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 44-50. |
[2] | MENG Yu *(孟宇), GAN Xin (甘鑫), WANG Yu (汪钰), GU Qing (顾青). LQR-GA Controller for Articulated Dump Truck Path Tracking System[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 78-85. |
[3] | JIAO Qinglong (焦庆龙), XU Da (徐达). A Discrete Bat Algorithm for Disassembly Sequence Planning[J]. sa, 2018, 23(2): 276-285. |
[4] | JIANG Wen-ying (姜文英), LIN Yan* (林 焰), CHEN Ming (陈 明), YU Yan-yun (于雁云). Research on the Optimization Approach for Cargo Oil Tank Design Based on the Improved Particle Swarm Optimization Algorithm[J]. 上海交通大学学报(英文版), 2015, 20(5): 565-570. |
[5] | PAN Qian1*(潘谦), HE Xing1 (何星), CAI Yun-ze1 (蔡云泽),WANG Zhi-hua2 (王治华), SU Fan2 (苏. Improved Real-Coded Genetic Algorithm Solution for Unit Commitment Problem Considering Energy Saving and Emission Reduction Demands[J]. 上海交通大学学报(英文版), 2015, 20(2): 218-223. |
[6] | HUANG Qiang1,2 (黄 强), LOU Xin-yuan3 (楼新远), WANG Wei4* (王 薇), NI Shao-quan1 (倪少权). Research of Order Allocation Model Based on Cloud and Hybrid Genetic Algorithm Under Ecommerce Environment[J]. 上海交通大学学报(英文版), 2013, 18(3): 334-342. |
[7] | XU Ji-xiang* (许继祥), ZHAO Jin-cheng (赵金城), DUAN Hai-juan (段海娟). Risk-Identification-Based Hybrid Method for Estimating the System Reliability of Existing Jacket Platforms Under Fire[J]. 上海交通大学学报(英文版), 2013, 18(1): 70-75. |
[8] | YAN Yu1 (阎昱), WANG Hai-bo1* (王海波), WAN Min2 (万敏). Forming Path Optimization for Press Bending of Aluminum Alloy Aircraft Integral Panel[J]. 上海交通大学学报(英文版), 2012, 17(5): 635-642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||