[1] FATEMI A, YANG L. Cumulative fatigue damage andlife prediction theories: A survey of the state of the artfor homogeneous materials [J]. International Journalof Fatigue, 1998, 20(1): 9-34.
[2] FERJAOUI A, YUE T, WAHAB M A, et al. Predictionof fretting fatigue crack initiation in double lapbolted joint using continuum damage mechanics [J].International Journal of Fatigue, 2015, 73: 66-76.
[3] LIU J H, WANG S N, WEI Y, et al. A new model forpredicting crack initiation life in thin walled tubes undermultiaxial proportional loading [J]. Jordan Journalof Mechanical and Industrial Engineering, 2014, 8(4):187-191.
[4] DATTOMA V, GIANCANE S, NOBILE R, et al. Fatiguelife prediction under variable loading based ona new non-linear continuum damage mechanics model[J]. International Journal of Fatigue, 2006, 28: 89-95.
[5] TANG H, BASARAN C. A damage mechanics basedfatigue life prediction model for solder joints [J]. Journaof Electronic Packaging, 2003, 125: 120-125.
[6] QIU J, ZHANG C, SETH B B, et al. Damage mechanicsapproach for bearing lifetime prognostics [J]. MechanicalSystems and Signal Processing, 2002, 16(5):817-829.
[7] SAKAMOTO J, LEE Y S, CHEONG S K. Effectof surface flaw on fatigue strength of shot-peenedmedium-carbon steel [J]. Engineering Fracture Mechanics,2015, 133: 99-111.
[8] NADERI M, AMIRI M, IYYER N, et al. Fatiguefailure initiation modeling in AA7075-T651 usingmicrostructure-sensitive continuum damage mechanics[J]. Journal of Failure Analysis and Prevention, 2015,15(5): 701-710.
[9] GIANGNA,OZDENUA, BEZOLDA, et al.Amodelfor predicting crack initiation in forged M3: 2 tool steelunder high cycle fatigue [J]. International Journal ofFracture, 2014, 187: 145-158.
[10] ZHANG J, JOHNSTON J, CHATTOPADHYAY A.Physics-based multiscale damage criterion for fatiguecrack prediction in aluminium alloy [J]. Fatigue andFracture of Engineering Materials and Structures,2014, 37: 119-131.
[11] ZHAN Z X, HU W P, MENG Q C, et al. Continuumdamage mechanics-based approach to the fatigue lifeprediction for 7050-T7451 aluminum alloy with impactpit [J]. International Journal of Damage Mechanics,2016, 25(7): 943-966.
[12] BRANCO R, COSTA J D, ANTUNES F V. Fatiguebehaviour and life prediction of lateral notched roundbars under bending-torsion loading [J]. EngineeringFracture Mechanics, 2014, 119: 66-84.
[13] PAREDESM,WIERZBICKI T, ZELENAK P. Prediction of crack initiation and propagation in X70 pipelinesteels [J]. Engineering Fracture Mechanics, 2016, 168:92-111.
[14] BRIOTTET L, MORO I, ESCOT M, et al. Fatiguecrack initiation and growth in a CrMo steel under hydrogenpressure [J]. International Journal of HydrogenEnergy, 2015, 40: 17021-17030.
[15] DEEPTHI T V, REDDY C S, SATYADEVI A. Recenttrends in elastic-plastic analysis using elastic solutions[J]. Materials Today: Proceedings, 2015, 2(4/5): 2188-2197.
[16] ONO Y, YURI T, SUMIYOSHI H, et al. High-cyclefatigue properties in Ti-5% Al-2.5% Sn ELI alloy withlarge grain size at cryogenic temperatures [J]. Fatigueand Fracture of Engineering Materials and Structures,2004, 27(5): 353-359.
[17] LEMAITRE J, LIPPMANN H. A course on damagemechanics [M]. Berlin: Springer-Verlag, 1996.
[18] SHIRATORI E, OBATAYA Y. Cyclic plastic strainenergy and low-cycle fatigue strength of nickel-chromesteel [J]. Bulletin of the Japan Society of MechanicalEngineers, 1969, 12(54): 1285-1291.
[19] VORMWALD M, SEEGER T. The consequences ofshort crack closure on fatigue crack growth under variableamplitude loading [J]. Fatigue and Fracture ofEngineering Materials and Structures, 1991, 14(2/3):205-225.
[20] SAVAIDIS G, SEEGER T. Consideration of multiaxialityin fatigue life prediction using the closure concept[J]. Fatigue and Fracture of Engineering Materials andStructures, 1997, 20(7): 985-1004.
[21] MEMON I R, ZHANG X, CUI D Y. Fatigue life predictionof 3-D problems by damage mechanics withtwo-block loading [J]. International Journal of Fatigue,2002, 24(1): 29-37.
[22] LEMAITRE J, CHABOCHE J L. Mechanics of solidmaterials [M]. Cambridge, England: Cambridge UniversityPress, 1994.
|