上海交通大学学报(英文版) ›› 2017, Vol. 22 ›› Issue (1): 114-120.doi: 10.1007/s12204-017-1809-5
MIN Lihua1*(闵莉花), FENG Can2 (冯 灿)
出版日期:
2017-02-28
发布日期:
2017-04-04
通讯作者:
MIN Lihua1*(闵莉花)
E-mail:mlh@njupt.edu.cn
MIN Lihua1*(闵莉花), FENG Can2 (冯 灿)
Online:
2017-02-28
Published:
2017-04-04
Contact:
MIN Lihua1*(闵莉花)
E-mail:mlh@njupt.edu.cn
摘要: Directionality of image plays a very important role in human visual system and it is important prior information of image. In this paper we propose a weighted directional total variation model to reconstruct image from its finite number of noisy compressive samples. A novel self-adaption, texture preservation method is designed to select the weight. Inspired by majorization-minimization scheme, we develop an efficient algorithm to seek the optimal solution of the proposed model by minimizing a sequence of quadratic surrogate penalties. The numerical examples are performed to compare its performance with four state-of-the-art algorithms. Experimental results clearly show that our method has better reconstruction accuracy on texture images than the existing scheme.
中图分类号:
MIN Lihua1*(闵莉花), FENG Can2 (冯 灿). Compressive Sensing Reconstruction Based on Weighted Directional Total Variation[J]. 上海交通大学学报(英文版), 2017, 22(1): 114-120.
MIN Lihua1*(闵莉花), FENG Can2 (冯 灿). Compressive Sensing Reconstruction Based on Weighted Directional Total Variation[J]. Journal of shanghai Jiaotong University (Science), 2017, 22(1): 114-120.
[1] | CANDES E J, ROMBERG J, TAO T. Robust uncertaintyprinciples: exact signal reconstruction fromhighly incomplete frequency information [J]. IEEETransactions on Information Theory, 2006, 52(2):489-509. |
[2] | DONOHO D L. Compressed sensing [J]. IEEE Transactionson Information Theory, 2006, 52(4): 1289-1306. |
[3] | CANDES E J, WAKIN M B. An introduction to compressivesampling [J]. IEEE Signal Processing Magazine,2008, 25(2): 21-30. |
[4] | ENGLH W, HANKE M, NEUBAUER A. Regularizationof inverse problems [M]. London: Kluwer AcademicPublishers, 1996. |
[5] | CANDESE J, ROMBERG J K. Signal recovery fromrandom projections [C]//Proceedings of SPIE-IS & TElectronic Imaging. Bellingham, USA: SPIE, 2005: 76-86. |
[6] | MA S, YIN W, ZHANG Y, et al. An efficient algorithmfor compressed MR imaging using total variation andwavelets [C]//IEEE Conference on Computer Visionand Pattern Recognition. Anchorage AK, USA: IEEE,2008: 1-8. |
[7] | RUDIN L I, OSHER S, FATEMI E. Nonlinear totalvariation based noise removal algorithms [J]. PhysicaD: Nonlinear Phenomena, 1992, 60(1): 259-268. |
[8] | BAYRAM I, KAMASAK M E. Directional total variation[J]. IEEE Signal Processing Letters, 2012, 19(12):781-784. |
[9] | ZHANG J, LAI R, JAYKUO C C. Adaptive directionaltotal-variation model for latent fingerprint segmentation[J]. IEEE Transactions on Information Forensicsand Security, 2013, 8(8): 1261-1273. |
[10] | WEICKERT J. Coherence-enhancing diffusion filtering[J]. International Journal of Computer Vision,1999, 31(2/3): 111-127. |
[11] | GRASMAIR M, LENZEN F. Anisotropic total variationfiltering [J]. Applied Mathematics & Optimization,2010, 62: 323-339. |
[12] | STEIDL G, TEUBER T. Anisotropic smoothing usingdouble orientations [C]//Scale Space and VariationalMethods in Computer Vision. Berlin Heidelberg:Springer, 2009: 477-489. |
[13] | LI C. An efficient algorithm for total variation regularizationwith applications to the single pixel cameraand compressive sensing [D]. Houston: Rice University,2009. |
[14] | YANG J, ZHANG Y, YIN W. A fast alternating directionmethod for TVL1-L2 signal reconstruction frompartial fourier Data [J]. IEEE Journal of Selected Topicsin Signal Processing, 2010, 4(2): 288-297. |
[15] | SHU X, AHUJA N. Hybrid compressive sampling viaa new total variation TVL1 [C]//Computer Vision–ECCV 2010. Berlin Heidelberg: Springer, 2010: 393-404. |
[16] | HU Y, JACOB M. Higher degree total variation(HDTV) regularization for image recovery [J]. IEEETransactions on Image Processing, 2012, 21(5): 2559-2571. |
[1] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 757-767. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[5] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[6] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[7] | XU Jiangchang (许江长), HE Shamin (何莎敏), YU Dedong (于德栋), WU Yiqun (吴轶群), CHEN Xiaojun, (陈晓军). Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(3): 298-305. |
[8] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Rethinking the Dice Loss for Deep Learning Lesion Segmentation in Medical Images[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 93-102. |
[9] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
[10] | LIU Min, DENG Bin, TANG Ying, WU Minghu, WANG Juan . Low-Cost Approach for Improving Video Transmission Efficiency in WVSN[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 600-605. |
[11] | WANG Yuzong (王毓综), DENG Fei (邓飞), ZHAO Daxu (赵大旭), YE Jiaying (叶佳英), WANG Peixin. Monocular Dynamic Machine Vision-Based Pearl Shape Detection[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 654-662. |
[12] | LI Dan (李丹), NIU Zhongbin (牛中彬), PENG Dongxu (彭冬旭) . Magnetic Tile Surface Defect Detection Based on Texture Feature Clustering[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 663-670. |
[13] | XUE Ankang (薛安康), LI Fan* (李凡), XIONG Yin (熊吟). Automatic Identification of Butterfly Species Based on Gray-Level Co-occurrence Matrix Features of Image Block[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 220-225. |
[14] | ZHOU Jingmei *(周经美), ZHAO Xiangmo (赵祥模), CHENG Xin (程鑫), XU Zhigang (徐志刚), ZHAO. Vehicle Ego-Localization Based on Streetscape Image Database Under Blind Area of Global Positioning System[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 122-129. |
[15] | MA Jin (马进), XUE Teng (薛腾), SHAO Quanquan (邵全全), HU Jie (胡洁), WANG Weiming (王伟明. Research on Spatially Adaptive High-Order Total Variation Model for Weak Fluorescence Image Restoration[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||