上海交通大学学报(英文版) ›› 2015, Vol. 20 ›› Issue (5): 513-527.doi: 10.1007/s12204-015-1659-y
• • 下一篇
LONG Hai-hui (龙海辉), ZHAO Jian-kang*(赵健康), LAI Jian-qing (赖剑清)
出版日期:
2015-10-28
发布日期:
2015-10-29
通讯作者:
ZHAO Jian-kang(赵健康)
E-mail:zhaojiankang@sjtu.edu.cn
LONG Hai-hui (龙海辉), ZHAO Jian-kang*(赵健康), LAI Jian-qing (赖剑清)
Online:
2015-10-28
Published:
2015-10-29
Contact:
ZHAO Jian-kang(赵健康)
E-mail:zhaojiankang@sjtu.edu.cn
摘要: An adaptive inverse optimal attitude controller for flexible spacecraft with fault-free actuator is designed based on adaptive control Lyapunov function and inverse optimal methodology subjected to unknown parameter uncertainties, external disturbances and input saturation. The partial loss of actuator effectiveness and the additive faults are considered simultaneously to deal with actuator faults, and the prior knowledge of bounds on the effectiveness factors of the actuators is assumed to be unknown. A fault-tolerant control version is designed to handle the system with actuator fault by introducing a parameter update law to estimate the lower bound of the partial loss of actuator effectiveness faults. The proposed fault-tolerant attitude controller ensures robustness and stabilization, and it achieves H∞ optimality with respect to a family of cost functionals. The usefulness of the proposed algorithms is assessed and compared with the conventional approaches through numerical simulations.
中图分类号:
LONG Hai-hui (龙海辉), ZHAO Jian-kang*(赵健康), LAI Jian-qing (赖剑清). H∞ Inverse Optimal Adaptive Fault-Tolerant Attitude Control for Flexible Spacecraft with Input Saturation[J]. 上海交通大学学报(英文版), 2015, 20(5): 513-527.
LONG Hai-hui (龙海辉), ZHAO Jian-kang*(赵健康), LAI Jian-qing (赖剑清). H∞ Inverse Optimal Adaptive Fault-Tolerant Attitude Control for Flexible Spacecraft with Input Saturation[J]. Journal of shanghai Jiaotong University (Science), 2015, 20(5): 513-527.
[1] | Jin J H, Ko S H, Ryoo C K. Fault tolerant control for satellites with four reaction wheels [J]. Control Engineering Practice, 2008, 16(10): 1250-1258. |
[2] | Hu Q L. Robust adaptive sliding-mode fault-tolerant control with L2-gain performance for flexible spacecraft using redundant reaction wheels [J]. IET Control Theory and Applications, 2009, 4(6): 1055-1070. |
[3] | Meng Q, Zhang T, Song J Y. Modified model-based fault-tolerant time-varying attitude tracking control of uncertain flexible satellites [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(11): 1827-1841. |
[4] | Hu Q L, Xiao B, Friswell M I. Robust faulttolerant control for spacecraft attitude stabilization subject to input saturation [J]. IET Control Theory and Application, 2011, 5(2): 271-282. |
[5] | Lee H, Kim Y. Fault-tolerant control scheme for satellite attitude control system [J]. IET Control Theory and Application, 2010, 4(8): 1436-1450. |
[6] | Xiao B, Hu Q L. Fault-tolerant attitude control for flexible spacecraft without angular velocity magnitude measurement [J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1556-1561. |
[7] | Boˇskovi′c JD, Li SM,MehraRK. Robust adaptive variable structure control of spacecraft under control input saturation [J]. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 14-22. |
[8] | Bang H, Tahk M J, Choi H D. Large angle attitude control of spacecraft with actuator saturation [J].Control Engineering Practice, 2003, 11: 989-997. |
[9] | Cai W C, Liao X H, Song Y D. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft [J]. Journal of Guidance, Control, and Dynamics,2008, 31(5): 1456-1463. |
[10] | Zou A M, Kumar K D. Adaptive fuzzy fault-tolerant attitude control of spacecraft [J]. Control Engineering Practice, 2011, 19: 10-21. |
[11] | Hu Q L, Xiao B. Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness [J]. Nonlinear Dynamics, 2011, 64: 13-23. |
[12] | Horri N M, Palmer P, Roberts M. Design and validation of inverse optimization software for the attitude control of microsatellites [J]. Acta Astronautica, 2011,69: 997-1006. |
[13] | Xin M, Pan H. Indirect robust control of spacecraft via optimal control solution [J] IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1798-1809. |
[14] | Nayeri M R D, Alasty A, Daneshjou K. Neural optimal control of flexible spacecraft slew maneuver[J]. Acta Astronautica, 2004, 55: 817-827. |
[15] | Zheng J H, Banks H G, Alleyne H. Optimal attitude control for three-axis stabilized flexible spacecraft[J]. Acta Astronautica, 2005, 56: 519-528. |
[16] | Park Y. Robust and optimal attitude stabilization of spacecraft with external disturbances [J]. Aerospace Science and Technology, 2005, 9: 253-259. |
[17] | Kang W. Nonlinear H∞ control and its application to rigid spacecraft [J]. IEEE Transactions on Automatic Control, 1995, 40(7): 1281-1285. |
[18] | Zheng Q, Wu F. Nonlinear H∞ control designs with axisymmetric spacecraft control [J]. Journal of Guidance,Control, and Dynamics, 2009, 32(3): 850-859. |
[19] | Liu C S, Jiang B. H∞ fault-tolerant control for timevaried actuator fault of nonlinear system [J]. International Journal of Systems Science, 2014, 45(12): 2447-2457. |
[20] | Li Z, Hu Y, Liu Y, et al. Adaptive inverse control of non-linear systems with unknown complex hysteretic non-linearities [J]. IET Control Theory and Applications,2012, 6(1): 1-7. |
[21] | Krsti′c M, Li Z H. Inverse optimal design of Input-to-State stabilizing nonlinear controllers [J]. IEEE Transactions on Automatic Control, 1998, 43(3): 336-350. |
[22] | Cai X S, Han Z Z. Inverse optimal control of nonlinear systems with structural uncertainty [J]. IET control Theory and Applications, 2005, 152(1): 79-83. |
[23] | Bharadwaj S, Qsipchuk M, Mease K D, et al. Geometry and inverse optimality in global attitude stabilization[J]. Journal of Guidance, Control, and Dynamics,1998, 21(6): 930-939. |
[24] | Krsti′c M, Tsiotras P. Inverse optimal stabilization of a rigid spacecraft [J]. IEEE Transactions on Automatic Control, 1999, 44(5): 1042-1049. |
[25] | Luo W C, Chu Y C, Ling K V. H∞ inverse optimal attitude-tracking control of rigid spacecraft [J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):481-493. |
[26] | Luo W C, Chu Y C, Ling K V. Inverse optimal adaptive control for attitude tracking of spacecraft[J]. IEEE Transactions on Automatic Control, 2005,50(11): 1639-1654. |
[27] | Krsti′c M, Kanellakopoulos I, Kokotovic P V.Nonlinear and adaptive control design [M]. New York:Wiley, 1995. |
[28] | Ahmed J, Coppola V T, Bernstein D S. Adaptive asymptotic tracking of spacecraft attitude notion with inertia matrix identification [J]. Journal of Guidance,Control, and Dynamics, 1998, 21(5), 684-691. |
[29] | Chen Z Y, Huang J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control[J]. IEEE Transaction on Automatic Control, 2009,54(3): 600-605. |
[30] | Gao W Z, Selmic R R. Neural network control of a class of nonlinear systems with actuator saturation [J].IEEE Transactions on Neural Networks, 2006, 17(1):147-156. |
[31] | Hu Q L, Xiao B. Intelligent proportional-derivative control for flexible spacecraft attitude stabilization with unknown input saturation [J]. Aerospace Science and Technology, 2012, 23: 63-74. |
[32] | Funahashi K I. On the approximate realization of continuous mappings by neural networks [J]. Neural Networks, 1989, 2(3): 183-192. |
[33] | Khalil H K. Nonlinear systems [M]. Upper Saddle River, NJ: Prentice-Hall, 1996. |
[34] | Yao B, Tomizuka M. Smooth robust adaptive sliding mode control of robot manipulators with guaranteed transient performance [J]. Journal of Dynamics systems,Measurement and Control, 1996, 118(4): 764-775. |
[1] | SHI Lianxing (石连星), WANG Zhiheng (王志恒), LI Xiaoyong (李小勇) . Novel Data Placement Algorithm for Distributed Storage System Based on Fault-Tolerant Domain[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 463-470. |
[2] | WU Tao (吴焘). High-Speed Fault-Tolerant Finite Impulse Response Digital Filter on Field Programmable Gate Array[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 554-558. |
[3] | HUANG Hantao, ZHOU Jingye, DI Qing, ZHOU Jiawei, LI Jiawang . Three-Dimensional Trajectory Tracking Control of Underactuated Autonomous Underwater Vehicles with Input Saturation[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 470-477. |
[4] | WANG Jian, SHI Liangren. Semi-Global Consensus Problems of Discrete-Time Multi-Agent Systems in the Presence of Input Constraints[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 288-298. |
[5] | LIU Yueyang (刘岳洋), HU Qinglei (胡庆雷), GUO Lei (郭雷). Finite-Time Attitude Tracking Control of Spacecraft with Actuator Saturation[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 650-656. |
[6] | YUE Caichenga (岳才成), CHEN Hongbina (陈红彬), QIAN Linfanga (钱林方), KONG Jianshoub (孔. Adaptive Sliding-Mode Tracking Control for an Uncertain Nonlinear SISO Servo System with a Disturbance Observer[J]. sa, 2018, 23(3): 376-. |
[7] | YANG Pu* (杨蒲), NI Jiangfan (倪江帆), PAN Xu (潘旭), GUO Ruicheng (郭瑞诚). Sliding Mode Robust Fault-Tolerant Control for Uncertain Systems with Time Delay[J]. 上海交通大学学报(英文版), 2017, 22(2): 240-246. |
[8] | YANG Qing-zhao (杨青照), ZHOU Ming* (周明), TIAN Hong-sen (田洪森),ZHANG Hui-sheng (张惠生). Simulation of Adaptive Control Strategy for Electrical Discharge Machining Process[J]. 上海交通大学学报(英文版), 2015, 20(4): 408-414. |
[9] | LIU Tao (刘 涛), ZHANG Wei-jing (张维竞), MA Jie (马 捷). Robust Adaptive Horizontal Vibration Isolation of Towed Seismic Streamers[J]. 上海交通大学学报(英文版), 2012, 17(1): 31-039. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||