上海交通大学学报(英文版) ›› 2014, Vol. 19 ›› Issue (4): 488-494.doi: 10.1007/s12204-014-1529-z
HU Shi-lianga* (胡世良), LU Chuan-jinga,b (鲁传敬), HE You-shenga,b (何友声)
出版日期:
2014-08-30
发布日期:
2014-10-13
通讯作者:
HU Shi-liang (胡世良)
E-mail: hushiliang@sjtu.edu.cn
HU Shi-lianga* (胡世良), LU Chuan-jinga,b (鲁传敬), HE You-shenga,b (何友声)
Online:
2014-08-30
Published:
2014-10-13
Contact:
HU Shi-liang (胡世良)
E-mail: hushiliang@sjtu.edu.cn
摘要: The vortex induced vibration (VIV) of a flexible plate behind the square head with various flow velocities is simulated. The closely coupling approach is used to model this fluid-structure interaction problem. The fluid governed by the incompressible Navier-Stokes equations is solved in arbitrary Lagrangian-Eulerian (ALE) frame by the finite volume method. The structure described by the equations of the elastodynamics in Lagrangian representation is discretized by the finite element approach. The numerical results show that the resonance occurs when the frequency of vortex shedding from square head coincides with the natural frequency of plate. And the amplitude of both the structure motion and the fluid load keeps increasing with the time. Furthermore, it is also found that in particular range of flow velocity the vibration of the plate would reach a periodical state. The amplitude of plate oscillating increases with the growth of velocity, while the frequency is locked.
中图分类号:
HU Shi-lianga* (胡世良), LU Chuan-jinga,b (鲁传敬), HE You-shenga,b (何友声). Numerical Study on Vortex Induced Vibration of a Flexible Plate Behind Square Cylinder with Various Flow Velocities[J]. 上海交通大学学报(英文版), 2014, 19(4): 488-494.
HU Shi-lianga* (胡世良), LU Chuan-jinga,b (鲁传敬), HE You-shenga,b (何友声). Numerical Study on Vortex Induced Vibration of a Flexible Plate Behind Square Cylinder with Various Flow Velocities[J]. Journal of shanghai Jiaotong University (Science), 2014, 19(4): 488-494.
[1] Hou G, Wang J, Layton A. Numerical method for fluid-structure interaction: A review [J]. Communications in Computational Physics, 2012, 12(2): 337-377. [2] Cebral J R. Loose coupling algorithms for fluidstructure interaction [D]. Virginia, USA: Institute for Computational Science and Informatics, George Mason University, 1996. [3] Blom F J. A monolithical fluid-structure interaction algorithm applied to the piston problem [J]. Computer Methods in Applied Mechanics and Engineering, 1998,167(3): 369-391. [4] Lian Y, Shyy W, Ifju P, et al. A computational model for coupled membrane-fluid dynamics [C]//Proceedings of 32nd AIAA Fluid Dynamics Conference and Exhibit. Missouri, USA: AIAA, 2002:2492-2494. [5] Bearman P W. Circular cylinder wakes and vortexinduced vibrations [J]. Journal of Fluids and Structures,2011, 27(5): 648-658. [6] Gabbai R D, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders [J]. Journal of Sound and Vibration, 2005,282(3): 575-616. [7] Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow [C]//Lecture Notes in Computational Science and Engineering,Fluid-Structure Interaction. Berlin, Germany:Springer-Verlag, 2006: 371-385. [8] van Zuijlen A H, Bijl H. Multi-level accelerated subiterations for fluid-structure interaction [C]//Lecture Notes in Computational Science and Engineering,Fluid Structure Interaction II. Berlin, Germany:Springer-Verlag, 2010: 1-25. [9] Rannacher R, Richter T. An adaptive finite element method for fluid-structure interaction problems based on a fully Eulerian formulation [C]//Lecture Notes in Computational Science and Engineering,Fluid Structure Interaction II. Berlin, Germany:Springer-Verlag, 2010: 159-191. [10] Bungartz H J, Benk J, Gatzhammer B, et al.Partitioned simulation of fluid-structure interaction on Cartesian grids [C]//Lecture Notes in Computational Science and Engineering, Fluid Structure Interaction II. Berlin, Germany: Springer-Verlag, 2010: 255-284. [11] Wall W A, Ramm E, Fluid-structure interaction base upon a stabilized (ALE) finite element method[C]//Proceedings of 4th World Congress on Computational Mechanics. Barcelona, Spain: CIMNE, 1998:1-20. [12] Hubner B, Walhorn E, Dinkler D. A monolithic approach to fluid-structure interaction using spacetime finite element [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(23): 2087-2104. [13] Dettmer W, Peri′c D. A computational framework for fluid-structure interaction: Finite element formulation and applications [J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41): 5754-5779. [14] Wang W Q, Yan Y. Strongly coupling of partitioned fluid-solid interaction solvers using reduced-order models[J]. Applied Mathematical Modelling, 2010, 34(12):3817-3830. [15] Kassiotis C, Ibrahimbegovic A, Niekamp R, et al.Nonlinear fluid-structure interaction problem. Part II.Space discretization, implementation aspects, nested parallelization and application examples [J]. Computational Mechanics, 2011, 47(3): 335-357. [16] Oxtoby O F, Malan A G. A matrix-free, implicit,incompressible fractional-step algorithm for fluid-structure interaction applications [J]. Journal of Computational Physics, 2012, 231(16): 5389-5405. [17] Malan A G, Oxtoby O F. An accelerated,fully-coupled, parallel 3D hybrid finite-volume fluidstructure interaction scheme [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 426-438. [18] Bathe K J. Finite element procedures [M]. New Jersey,USA: Prentice-Hall, 1996. [19] Jansen K, Shakib F, Hughes T J R. Fast projection algorithm for unstructured meshes [C]//Computational Nonlinear Mechanics in Aerospace Engineering. Reston, VA, USA: AIAA,1992: 175-204. |
[1] | LIU Ziwen (刘子文), XIAO Lei (肖雷), BAO Jinsong (鲍劲松), TAO Qingbao (陶清宝) . Bearing Incipient Fault Detection Method Based on Stochastic Resonance with Triple-Well Potential System[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 482-487. |
[2] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[3] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[4] | LIU Guangkai (刘广凯), SUN Huixian (孙慧贤), QUAN Houde (全厚德), CUI Peizhang (崔佩璋), ZHU. Preliminary Application of Scale Transformation Stochastic Resonance in Dual-Sequence Frequency Hopping System[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 775-781. |
[5] | LI Shuxun *(李树勋), ZHU Lu (朱禄), WANG Weibo (王伟波), XIAO Kuijun (肖奎军), XU Xiaogang . Analysis of Thermal-Fluid-Structure Coupling and Resonance Forecast for Link Butterfly Valve Under Small Opening[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 341-350. |
[6] | JIANG Xiaolin* (江晓林), DIAO Ming (刁鸣), QU Susu (渠苏苏). Signal Detection Algorithm Design Based on Stochastic Resonance Technology Under Low Signal-to-Noise Ratio[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 328-334. |
[7] | WANG Pei (王昢), LIU Hua (刘华), CHENG Xiang (程翔), ZHAO Wanliang (赵万良), LI Shaolian. Design of Braunbeck Coil for Nuclear Magnetic Resonance Gyro Magnetic Field Excitation[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 740-745. |
[8] | XU Xiaoling (徐晓玲), LIU Yiling (刘沂玲), LIU Qiegen (刘且根),LU Hongyang (卢红阳), ZHANG M. Gradient-Based Low Rank Method for Highly Undersampled Magnetic Resonance Imaging Reconstruction[J]. sa, 2018, 23(3): 384-. |
[9] | TANG He-nan* (汤赫男), WANG Shi-jie (王世杰), ZHAO Jing (赵晶). Effect of Fluid-Structure Interaction on Sealed Flow Field and Leakage Rate Based on Computational Fluid Dynamics[J]. 上海交通大学学报(英文版), 2015, 20(3): 326-330. |
[10] | ZHU Meng-yuan (朱梦媛), SHEN Guo-feng* (沈国峰), SU Zhi-qiang (苏志强),CHEN Sheng (陈晟), W. Real-Time MRI-Controlled Ultrasound Hyperthermia System for Superficial Tumor Treatment[J]. 上海交通大学学报(英文版), 2014, 19(6): 715-717. |
[11] | YANG Yong1,2 (杨勇), CHE Chi-dong1* (车驰东), TANG Wen-yong1 (唐文勇). Shafting Coupled Vibration Research Based on Wave Approach[J]. 上海交通大学学报(英文版), 2014, 19(3): 325-336. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 258
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 586
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||