J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 952-961.doi: 10.1007/s12204-024-2699-y

• • 上一篇    下一篇

基于异步事件流超图网络的运动目标识别方法

  

  1. 1. 大连理工大学 社会计算与认知智能教育部重点实验室;计算机科学与技术学院,辽宁 大连 116024;2. 上海海思技术有限公司,上海 200040
  • 收稿日期:2023-08-03 接受日期:2023-08-24 出版日期:2025-09-26 发布日期:2024-01-16

Hypergraph-Based Asynchronous Event Processing for Moving Object Classification

于男男1,王超毅1,乔羽1,王宇新1,郑成林2,张强1,杨鑫1   

  1. 1. Key Laboratory of Social Computing and Cognitive Intelligence of Ministry of Education; School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China; 2. HiSilicon (Shanghai) Technologies Co, Ltd., Shanghai 200040, China
  • Received:2023-08-03 Accepted:2023-08-24 Online:2025-09-26 Published:2024-01-16

摘要: 与传统相机的采样方式不同,事件相机可以捕捉异步的事件流数据,其中每个事件由编码像素位置、触发事件和亮度的极性变化表示。本文针对传统相机在处理高动态复杂场景时的局限性问题,提出了一种基于异步事件流超图网络的运动目标步态识别新方法。具体来说, 本文先使用事件相机感知运动目标,采集高时间、空间分辨率的异步事件流数据。与堆叠事件帧的处理方法不同,本文结合超图网络模型进行学习,将异步事件数据编码成超图结构,充分挖掘事件数据的高阶相关性,并设计混合卷积的超图神经网络进行训练,在超图注意力机制和残差结构的优化下实现更高效、更准确的运动目标识别。实验结果表明,所提出的超图结构在处理高动态数据时性能更为优越,在公开的运动目标识别(如步态识别)数据集上具有前沿的效果。

关键词: 超图学习, 事件流, 运动目标识别

Abstract: Unlike traditional video cameras, event cameras capture asynchronous event streams in which each event encodes pixel location, triggers’ timestamps, and the polarity of brightness changes. In this paper, we introduce a novel hypergraph-based framework for moving object classification. Specifically, we capture moving objects with an event camera, to perceive and collect asynchronous event streams in a high temporal resolution. Unlike stacked event frames, we encode asynchronous event data into a hypergraph, fully mining the high-order correlation of event data, and designing a mixed convolutional hypergraph neural network for training to achieve a more efficient and accurate motion target recognition. The experimental results show that our method has a good performance in moving object classification (e.g., gait identification).

中图分类号: