J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (4): 759-767.doi: 10.1007/s12204-024-2577-7
所属专题: 生物力学
收稿日期:
2023-12-30
接受日期:
2024-02-05
出版日期:
2025-07-31
发布日期:
2025-07-31
陈惠然,富荣昌,杨骁峥,李鹏举,王昆
Received:
2023-12-30
Accepted:
2024-02-05
Online:
2025-07-31
Published:
2025-07-31
摘要: 膝关节的结构复杂,而且影响膝关节运动的因素较多,因此研究步行过程中步幅对膝关节接触的影响对保护膝关节和探究膝关节疾病的产生机理都具有重要意义。本研究中,邀请了一名健康志愿者,通过动作捕捉实验探究了不同步幅下的下肢运动学特性。同时,建立了一个完整精细的膝关节有限元模型,并通过有限元分析研究了步幅对膝关节接触的影响。其中边界条件和载荷是根据动作捕捉实验中获得的符合实际工况的数据设置的。当行走步幅比习惯步幅增加23.08%时,单腿支撑阶段开始时刻的膝关节屈曲角度增加了108.12%,软骨和半月板上的最大von Mises应力值分别从5.888 MPa、5.599MPa增加到16.023 MPa、17.387 MPa,接触面上的高应力区也有显著偏移。当行走步幅比习惯步幅减少12.31%时,单腿支撑阶段结束时刻的膝关节屈曲角度减少了62.22%,软骨和半月板上的最大von Mises应力值分别从5.362 MPa、5.255 MPa减少到2.074 MPa 、1.986 MPa。研究结果表明:通过步行锻炼膝关节和预防、治疗膝关节疾病时,人们应该根据膝关节的健康状况选择合适的步幅进行锻炼,避免过度追求大步幅来提高锻炼效果,而通过较小的步幅进行锻炼则适合大多数人群。
中图分类号:
. 步幅对膝关节接触的影响[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 759-767.
Chen Huiran, Fu Rongchang, Yang Xiaozheng, Li Pengju, Wang Kun. Effect of Stride Length on Knee Contact[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 759-767.
[1] SAFIRI S, KOLAHI A A, SMITH E, et al. Global, regional and national burden of osteoarthritis 1990-2017: A systematic analysis of the Global Burden of Disease Study 2017 [J]. Annals of the Rheumatic Diseases, 2020, 79(6): 819-828. [2] BIEDERT R M, SANCHIS-ALFONSO V. Sources of anterior knee pain [J]. Clinics in Sports Medicine, 2002, 21(3): 335-347. [3] BENNELL K L, HINMAN R S. A review of the clinical evidence for exercise in osteoarthritis of the hip and knee [J]. Journal of Science and Medicine in Sport, 2011, 14(1): 4-9. [4] NA A, BUCHANAN T S. Self-reported walking difficulty influences gait characteristics in patients with medial compartment knee osteoarthritis [J]. Clinical Biomechanics, 2022, 100: 105805. [5] LO G H, VINOD S, RICHARD M J, et al. Association between walking for exercise and symptomatic and structural progression in individuals with knee osteoarthritis: Data from the osteoarthritis initiative cohort [J]. Arthritis & Rheumatology, 2022, 74(10): 1660-1667. [6] MILLS K, HÜBSCHER M, O’LEARY H, et al. Current concepts in joint pain in knee osteoarthritis [J]. Schmerz, 2019, 33(1): 22-29. [7] SAKAMOTO J, MIYAHARA S, MOTOKAWA S, et al. Regular walking exercise prior to knee osteoarthritis reduces joint pain in an animal model [J]. PLoS One, 2023, 18(8): e0289765. [8] KAUFMAN K R, HUGHES C, MORREY B F, et al. Gait characteristics of patients with knee osteoarthritis [J]. Journal of Biomechanics, 2001, 34(7): 907-915. [9] WANG X, MA Y, HOU B Y, et al. Influence of gait speeds on contact forces of lower limbs [J]. Journal of Healthcare Engineering, 2017, 2017: 6375976. [10] WARD S R, POWERS C M. The influence of patella Alta on patellofemoral joint stress during normal and fast walking [J]. Clinical Biomechanics, 2004, 19(10): 1040-1047. [11] MAGALHÃES C M B, RESENDE R A, KIRKWOOD R N. Increased hip internal abduction moment and reduced speed are the gait strategies used by women with knee osteoarthritis [J]. Journal of Electromyography and Kinesiology, 2013, 23(5): 1243-1249. [12] EDD S N, BENNOUR S, ULRICH B, et al. Modifying stride length in isolation and in combination with foot progression angle and step width can improve knee kinetics related to osteoarthritis; A preliminary study in healthy subjects [J]. Journal of Biomechanical Engineering, 2020, 142(7): 074505. [13] FAVRE J, ERHART-HLEDIK J C, CHEHAB E F, et al. General scheme to reduce the knee adduction moment by modifying a combination of gait variables [J]. Journal of Orthopaedic Research, 2016, 34(9): 1547-1556. [14] MILNER C E, MEARDON S A, HAWKINS J L, et al. Walking velocity and step length adjustments affect knee joint contact forces in healthy weight and obese adults [J]. Journal of Orthopaedic Research, 2018, 36(10): 2679-2686. [15] ULRICH B, PEREIRA L C, JOLLES B M, et al. Walking with shorter stride length could improve knee kinetics of patients with medial knee osteoarthritis [J]. Journal of Biomechanics, 2023, 147: 111449. [16] ATMACA H, ÖZKAN A, MUTLU İ, et al. The effect of proximal tibial corrective osteotomy on menisci, tibia and tarsal bones: A finite element model study of tibia vara [J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(1): 93-97. [17] GUESS T M, THIAGARAJAN G, KIA M, et al. A subject specific multibody model of the knee with menisci [J]. Medical Engineering & Physics, 2010, 32(5): 505-515. [18] LI G, LOPEZ O, RUBASH H. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis [J]. Journal of Biomechanical Engineering, 2001, 123(4): 341-346. [19] LI Z X, LIU L, GAO L L, et al. Establishment and validation of precise finite element model of human total knee joint [J]. Biomedical Engineering and Clinical Medicine, 2020, 24(5), 501-507 (in Chinese). [20] SHU L M, YAMAMOTO K, YOSHIZAKI R, et al. Multiscale finite element musculoskeletal model for intact knee dynamics [J]. Computers in Biology and Medicine, 2022, 141: 105023. [21] DASZKIEWICZ K, ŁUCZKIEWICZ P. Biomechanics of the medial meniscus in the osteoarthritic knee joint [J]. PeerJ, 2021, 9: e12509. [22] DONG Y F, HU G H, ZHANG L L, et al. Accurate 3D reconstruction of subject-specific knee finite element model to simulate the articular cartilage defects [J]. Journal of Shanghai Jiao Tong University (Science), 2011, 16(5): 620-627. [23] FARROKHI S, KEYAK J H, POWERS C M. Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: A finite element analysis study [J]. Osteoarthritis and Cartilage, 2011, 19(3): 287-294. [24] FURUMATSU T, OKAZAKI Y, OKAZAKI Y, et al. Injury patterns of medial meniscus posterior root tears [J]. Orthopaedics & Traumatology: Surgery & Research, 2019, 105(1): 107-111. |
[1] | 翟旭茂, 田新伟, 张传斌, 李玉娟, 刘硕, 崔毅. 柴油机活塞缸套摩擦副润滑和多柔体动力学耦合特性[J]. 上海交通大学学报, 2024, 58(3): 324-332. |
[2] | AZKA Umar, 姜淳, KHUSHIK Muhammad Hanif Ahmed Khan . 二维Si-A (Ge, Pb, Sn)合金-气孔热晶体的能带结构特征[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 180-185. |
[3] | 陈洋, 蒋刚, 梁山, 王肇喜. 典型舱段结构高频振动仿真分析方法[J]. 空天防御, 2023, 6(2): 88-94. |
[4] | 王谦, 丁晓红, 张横. 厚薄通用四边形平板壳元在薄壁结构加筋布局优化中的应用[J]. 空天防御, 2023, 6(2): 55-61. |
[5] | 张培珍, 林芳. 开式呼吸蛙人专用氧气瓶声散射特性[J]. 上海交通大学学报, 2022, 56(6): 764-771. |
[6] | 张宇, 刘海亭, 翁琳, 沈耀. 环形缺口小冲杆试样结合内聚力模型提取断裂韧性参数[J]. 上海交通大学学报, 2021, 55(7): 850-857. |
[7] | 郑昌隆, 丁晓红, 沈洪, 赵利娟. 基于自适应成长法的舵面结构动力学拓扑优化设计方法研究[J]. 空天防御, 2021, 4(2): 7-12. |
[8] | 王峰, 陈佳莉, 陈灯红, 范勇, 李志远, 何卫平. 基于滑动Kriging插值的EFG-SBM求解含侧边界的稳态热传导问题[J]. 上海交通大学学报, 2021, 55(11): 1483-1492. |
[9] | 蒋倩倩,王家序,李俊阳,肖科,唐挺,王成. 双圆弧谐波传动齿廓参数对柔轮应力影响[J]. 上海交通大学学报, 2020, 54(2): 167-175. |
[10] | 叶礼裕, 王超, 郭春雨, 常欣. 集中冰载工况下的桨叶边缘强度校核方法[J]. 上海交通大学学报, 2020, 54(1): 10-19. |
[11] | 刘永财,鲍益东,秦雪娇,刘玉琳,陈文亮. 板料成形快速模拟的中间构形构造方法[J]. 上海交通大学学报, 2019, 53(6): 713-718. |
[12] | 杜慧敏,罗震,敖三三,张禹,郝志壮. 5052铝合金电阻点焊电极形状对电极寿命的影响[J]. 上海交通大学学报, 2019, 53(6): 708-712. |
[13] | 尹雪乐,张文光,唐嘉琪,于谦. 多柄鱼骨状神经电极的微动模拟与优化设计[J]. 上海交通大学学报, 2019, 53(5): 529-534. |
[14] | 张向奎,王洋,王长生,胡平. 基于逆有限元法和网格映射的板材成型坯料优化[J]. 上海交通大学学报, 2019, 53(11): 1389-1394. |
[15] | 闫棣, 苏祺, 李四平. 屈曲问题有限元模拟的随机缺陷法[J]. 上海交通大学学报, 2019, 53(1): 19-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||