J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (2): 220-226.doi: 10.1007/s12204-023-2621-z
接受日期:
2022-09-21
出版日期:
2025-03-21
发布日期:
2025-03-21
刘维红∗,关东阳,黄倩,陈柳杨,张梦林
Accepted:
2022-09-21
Online:
2025-03-21
Published:
2025-03-21
摘要:
本文提出了一种Ka波段宽带微带到微带槽线多模谐振器的无孔垂直过渡结构。在4层LCP电路中,所提出的过渡结构主要包括在公共地平面上的槽线谐振器,以及顶层和第3层彼此相对的两条微带线。为了改善所提出过渡结构的带宽,在顶层和第3层微带线上分别添加了U型枝节线。通过调节U型枝节线的位置,可以适当地激发槽线谐振器。因此,获得了一个三极点宽频垂直过渡结构,在29.27—39.9 5 GHz宽频范围内显示出良好的传输性能。基于多层LCP衬底设计了三极点宽带垂直过渡结构,并进行了制作和测试。测试结果表明,可以得到在26.84—36.26 GHz的宽频率范围内,回波损耗优于-10 dB,插入损耗小于-3 dB。
中图分类号:
. 基于多层LCP技术宽带微带到微带无孔垂直过渡结构的设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 220-226.
LIU Weihong , GUAN Dongyang , HUANG Qian , CHEN Liuyang, ZHANG Menglin . Wideband Microstrip-to-Microstrip Vialess Vertical Transition Based on Multilayer Liquid Crystal Polymer Technology[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 220-226.
[1] VALOIS R, BAILLARGEAT D, VERDEYME S, et al. High performances of shielded LTCC vertical transitions from DC up to 50GHz [J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(6): 2026- 2032. [2] CASARES-MIRANDA F P, VIERECK C, CAMACHO-PENALOSA C, et al. Vertical microstrip transition for multilayer microwave circuits with decoupled passive and active layers [J]. IEEE Microwave and Wireless Components Letters, 2006, 16(7): 401-403. [3] LI E S, CHENG J C, LAI C C. Designs for broadband microstrip vertical transitions using cavity couplers [J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(1): 464-472. [4] POZAR D M. Analysis and design of cavity-coupled microstrip couplers and transitions [J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(3): 1034-1044. [5] CHEN C, TSAI M J, ALEXOPOULOS N G. Optimization of aperture transitions for multi-port microstrip circuits [C]//1996 IEEE MTT-S International Microwave Symposium Digest. San Francisco: IEEE, 1996: 711-714. [6] ZHU L,WU K. Ultrabroad-band vertical transition for multilayer integrated circuits [J]. IEEE Microwave and Guided Wave Letters, 1999, 9(11): 453-455. [7] ABBOSH A M. Vertical microstrip-microstrip transition for ultra wideband applications [C]//2007 Asia- Pacific Microwave Conference. Bangkok: IEEE, 2007: 1-4. [8] TAOZW, SUNJ F, HUANGM, et al. Design of wideband slot-coupled microstrip vertical transition [J]. International Journal of RF and Microwave Computer- Aided Engineering, 2020, 30(4): e22118. [9] YANG L, ZHU L, CHOI W W, et al. Compact wideband microstrip-to-microstrip vertical transition with extended upper stopband [J]. International Journal of RF and Microwave Computer-Aided Engineering, 2018, 28(4): e21228. [10] HU K Y, JIANG Y, FENG L P, et al. A wideband filtering microstrip-to-microstrip vialess vertical transition on CPW MMR [J]. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31(4): e22567. [11] ZHANG Y F, SHI S Y, MARTIN R D, et al. Ultrawideband vialess microstrip line-to-stripline transition in multilayer LCP substrate for E- and W-band applications [J]. IEEE Microwave and Wireless Components Letters, 2017, 27(12): 1101-1103. [12] SERCU J, FACHE N, LIBBRECHT F, et al. Mixed potential integral equation technique for hybrid microstrip-slotline multilayered circuits using a mixed rectangular-triangular mesh [J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(5): 1162- 1172. [13] HUANG X B, WU K L. A broadband and vialess vertical microstrip-to-microstrip transition [J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(4): 938-944. [14] ZHU L, SUN S, MENZEL W. Ultra-wideband (UWB) bandpass filters using multiple-mode resonator [J]. IEEE Microwave and Wireless Components Letters, 2005, 15(11): 796-798. [15] GUO X, ZHU L, WANG J P, et al. Wideband microstrip-to-microstrip vertical transitions via multiresonant modes in a slotline resonator [J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(6): 1902-1909. [16] YANG L, ZHU L, CHOI W W, et al. Analysis and design of wideband microstrip-to-microstrip equal ripple vertical transitions and their application to bandpass filters [J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8): 2866-2877. |
[1] | . 基于多传感器数据融合的室内车辆定位[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 77-85. |
[2] | 张文旭, 吴振南, 陆满君, 胡建波. 电子侦察干扰一体机及国产化综述[J]. 空天防御, 2022, 5(2): 75-86. |
[3] | 徐啸, 陆戈辉, 黄杉, 王立权, 柴娟芳. 宽带成像目标模拟系统相位误差自提取方法研究[J]. 空天防御, 2020, 3(4): 103-108. |
[4] | 孙铭阳,颜国正,刘大生,王志武,韩玎,赵凯,杨雷. 基于超宽带技术的强制戒毒人员实时定位系统[J]. 上海交通大学学报, 2020, 54(1): 76-84. |
[5] | 黄家露, 黄文涛, 金江, 胡林, 蔡乾. 基于减谱法的本底噪声降低技术研究[J]. 空天防御, 2019, 2(2): 44-48. |
[6] | 周逍宙, 邓春, 陈祎, 李小平, 李添翼. 基于DDS的宽带低相噪本振源设计与验证[J]. 空天防御, 2019, 2(1): 53-57. |
[7] | 何亚, 毛勇. 一种战场局部环境超宽带定位技术研究[J]. 空天防御, 2018, 1(4): 18-23. |
[8] | 刘汉1,尹成友2,范启蒙2. 基于储能的超宽带天线分析与设计[J]. 上海交通大学学报(自然版), 2017, 51(5): 619-. |
[9] | 贾波1,王斌1,范军1,张培珍2. 水下目标宽带回波特性的快速计算方法[J]. 上海交通大学学报(自然版), 2017, 51(2): 224-. |
[10] | 王汝言1, 2,周超3,吴大鹏1, 2,谢毅4,向罗勇4. 自适应延迟感知的光无线混合宽带接入网节能机制[J]. 上海交通大学学报(自然版), 2017, 51(1): 105-. |
[11] | 侯文林1,2,郭英2,张坤峰2,胡月1,2,张羚2. 宽带共形阵列信源方位与极化联合估计算法[J]. 上海交通大学学报(自然版), 2016, 50(05): 764-770. |
[12] | 高卫东,刘汉,孙荣辉. 一种新型缺陷地结构的双陷波超宽带天线[J]. 上海交通大学学报(自然版), 2013, 47(07): 1109-1113. |
[13] | 宫蕴瑞1, 何迪1, 何晨1, 邓浩2. 时间反转超宽带系统的空间谱定位算法[J]. 上海交通大学学报(自然版), 2012, 46(06): 848-853. |
[14] | 龚凌嵩, 王澄, 杨宇航, 朱容波. 采用窄带干扰抑制技术的直接序列超宽带系统闭式误比特率分析[J]. 上海交通大学学报(自然版), 2011, 45(03): 358-0362. |
[15] | 张先玉,刘郁林,张建新. 基于隐藏导频的多频带正交频分复用超宽带稀疏信道估计 |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 24
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||