J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (2): 186-191.doi: 10.1007/s12204-022-2421-x
董钱,郭立强,王伟琳,程广贵
收稿日期:
2020-12-17
接受日期:
2021-01-27
出版日期:
2023-03-28
发布日期:
2023-03-21
DONG Qian (董 钱), GUO Liqiang (郭立强), WANG Weilin (王伟琳), CHENG Guanggui (程广贵)
Received:
2020-12-17
Accepted:
2021-01-27
Online:
2023-03-28
Published:
2023-03-21
摘要: 随着集成电路和人工智能的发展,发明了各种各样的晶体管。近年来,氧化薄膜晶体管因其易于制备、成本低、适合批量生产而受到广泛关注。氧化物薄膜晶体管中传统使用的栅介质膜(如二氧化硅膜)介电常数较低,导致栅介质层与沟道层之间的电容耦合较弱。为了达到调节沟道层电流的目的,需要在栅电极上施加高电压(10 V或更高),因此需要开发新型氧化物薄膜。采用旋涂法在氧化铟锡玻璃表面制备了硅烷偶联剂(γ-氨丙基三乙氧基硅烷)KH550固态电解质薄膜,以此为栅介质制备了氧化铟锌薄膜晶体管。利用原子力显微镜和扫描电子显微镜对KH550薄膜的表面形貌和厚度进行表征;使用阻抗分析仪测试了样品的电容-频率曲线;通过半导体参数仪分析了器件的电学特性。结果表明,频率为1 Hz时的单位面积电容达7.3 μF/cm2,晶体管的工作电压为2 V、开关比1.24×106、亚阈值摆幅169.2 mV/dec、场效应迁移率2.1 cm2/(V·s),其脉冲工作稳定性和负偏压稳定性良好。KH550固态栅介质的开发研究为氧化物薄膜晶体管栅介质的研究提供了一种新的方向和思路。
中图分类号:
董钱, 郭立强, 王伟琳, 程广贵. 基于KH550固态电解质的低压氧化铟锌薄膜晶体管[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 186-191.
DONG Qian (董 钱), GUO Liqiang(郭立强), WANG Weilin (王伟琳), CHENG Guanggui (程广贵). Low Voltage Indium-Oxide-Zinc Thin Film Transistor Gated by KH550 Solid Electrolyte[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 186-191.
[1] | ZHOU B, SUN J, HAN X, et al. Low-voltage organic/inorganic hybrid transparent thin-film transistors gated by chitosan-based proton conductors [J]. IEEE Electron Device Letters, 2011, 32(11): 1549-1551. |
[2] | FORTUNATO E M C, BARQUINHA P M C, PIMENTEL A C M B G, et al. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature [J]. Applied Physics Letters, 2004, 85(13): 2541-2543. |
[3] | NOMURA K, OHTA H, TAKAGI A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J]. Nature, 2004, 432(7016): 488-492. |
[4] | FORTUNATO E, BARQUINHA P, MARTINS R. Oxide semiconductor thin-film transistors: A review of recent advances [J]. Advanced Materials, 2012, 24(22): 2945-2986. |
[5] | JIANG J, WAN Q, SUN J, et al. Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature [J]. Applied Physics Letters, 2009, 95(15): 152114. |
[6] | NOMURA K, KAMIYA T, YANAGI H, et al. Sub-gap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive X-ray photoelectron spectroscopy [J]. Applied Physics Letters, 2008, 92(20): 202117. |
[7] | IWASAKI T, ITAGAKI N, DEN T, et al. Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In-Ga-Zn-O system [J]. Applied Physics Letters, 2007, 90(24): 242114. |
[8] | JANG J, PARK J C, KONG D, et al. Endurance characteristics of amorphous-InGaZnO transparent flash memory with gold nanocrystal storage layer [J]. IEEE Transactions on Electron Devices, 2011, 58(11): 3940-3947. |
[9] | SURESH A, NOVAK S, WELLENIUS P, et al. Transparent indium gallium zinc oxide transistor based floating gate memory with platinum nanoparticles in the gate dielectric [J]. Applied Physics Letters, 2009, 94(12): 123501. |
[10] | CHEN W T, ZAN H W. High-performance light-erasable memory and real-time ultraviolet detector based on unannealed indium-gallium-zinc-oxide thin-film transistor [J]. IEEE Electron Device Letters, 2012, 33(1): 77-79. |
[11] | MYEONGHUN U, HAN Y J, SONG S H, et al. High performance p-type SnO thin-film transistor with SiOx gate insulator deposited by low-temperature PECVD method [J]. Journal of Semiconductor Technology and Science, 2014, 14(5): 666-672. |
[12] | LU A X, SUN J, JIANG J, et al. Low-voltage transparent electric-double-layer ZnO-based thin-film transistors for portable transparent electronics [J]. Applied Physics Letters, 2010, 96(4): 043114. |
[13] | YU S, GAO B, FANG Z, et al. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation [J]. Advanced Materials, 2013, 25(12): 1774-1779. |
[14] | ZHAO Y H, FENG G D, JIANG J. Poly(vinyl alcohol)-gated junctionless Al-Zn-O phototransistor for photonic and electric hybrid neuromorphic computation [J]. Solid-State Electronics, 2020, 165: 107767. |
[15] | ZHANG W, HU Y, CHANG T C, et al. An electronic synapse device based on solid electrolyte resistive random access memory [J]. IEEE Electron Device Letters, 2015, 36(8): 772-774. |
[16] | ZHAO Y H, LIU B, YANG J L, et al. Polymer-decorated 2D MoS2 synaptic transistors for biological bipolar metaplasticities emulation [J]. Chinese Physics Letters, 2020, 37(8): 088501. |
[17] | OK J G, KWAK M K, HUARD C M, et al. Photo-roll lithography (PRL) for continuous and scalable patterning with application in flexible electronics [J]. Advanced Materials, 2013, 25(45): 6554-6561. |
[18] | HERLOGSSON L, CRISPIN X, ROBINSON N, et al. Low-voltage polymer field-effect transistors gated via a proton conductor [J]. Advanced Materials, 2007, 19(1): 97-101. |
[19] | YUAN H, SHIMOTANI H, TSUKAZAKI A, et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids [J]. Advanced Functional Materials, 2009, 19(7): 1046-1053. |
[20] | GUO L, WEN J, CHENG G, et al. Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte [J]. Acta Physica Sinica, 2016, 65(17): 178501 (in Chinese). |
[21] | FENG G D, JIANG J, ZHAO Y H, et al. A sub-10 nm vertical organic/inorganic hybrid transistor for painperceptual and sensitization-regulated nociceptor emulation [J]. Advanced Materials, 2020, 32(6): 1906171. |
[22] | PAL B N, DHAR B M, SEE K C, et al. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors [J]. Nature Materials, 2009, 8(11): 898-903. |
[23] | LIU Y H, ZHU L Q, SHI Y, et al. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors [J]. Applied Physics Letters, 2014, 104(13): 133504. |
[24] | FU W H, LI J, JIANG D L, et al. Proton conducting C3 N4/Chitosan composite electrolytes based In-ZnO thin film transistor for artificial synapse [J]. Organic Electronics, 2020, 85: 105870. |
[25] | MIN S Y, CHO W J. CMOS-compatible synaptic transistor gated by chitosan electrolyte-Ta2 O5 hybrid electric double layer [J]. Scientific Reports, 2020, 10: 15561. |
[26] | LU P P, SHANG D S, YANG C S, et al. An organic synaptic transistor with nafion electrolyte [J]. Journal of Physics D : Applied Physics, 2020, 53(48): 485102. |
[27] | LONG T Y, ZHU L Q, REN Z Y, et al. Global modulatory heterosynaptic mechanisms in bio-polymer electrolyte gated oxide neuron transistors [J]. Journal of Physics D : Applied Physics, 2020, 53(43): 435105. |
[28] | SAID E, CRISPIN X, HERLOGSSON L, et al. Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film [J]. Applied Physics Letters, 2006, 89(14): 143507. |
[29] | GUO L Q, HUANG Y, SHI Y, et al. Indium-zinc-oxide electric-double-layer thin-film transistors gated by silane coupling agents 3-triethoxysilylpropylamine-graphene oxide solid electrolyte [J]. Journal of Physics D : Applied Physics, 2015, 48(28): 285103. |
[30] | WEE G, LARSSON O, SRINIVASAN M, et al. Effect of the ionic conductivity on the performance of polyelectrolyte-based supercapacitors [J]. Advanced Functional Materials, 2010, 20(24): 4344-4350. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||