[1] |
ASANO K, HATAKEYAMA F, YATSUZUKA K. Fundamental study of an electrostatic chuck for silicon wafer handling [J]. IEEE Transactions on Industry Applications, 2002, 38(3): 840-845.
|
[2] |
YATSUZUKA K, HATAKEYAMA F, ASANO K, et al. Fundamental characteristics of electrostatic wafer chuck with insulating sealant [J]. IEEE Transactions on Industry Applications, 2000, 36(2): 510-516.
|
[3] |
TAGHIZADEH M, GHAFFARI A, NAJAFI F. Modeling and identification of a solenoid valve for PWM control applications [J]. Comptes Rendus M′ecanique, 2009, 337(3): 131-140.
|
[4] |
MEUNIER G. The finite element method for electromagnetic modeling [M]. London: ISTE, 2008.
|
[5] |
PRAHLAD H, PELRINE R, STANFORD S, et al. Electroadhesive robots — wall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology [C]//IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008: 3028-3033.
|
[6] |
BERENGUERES J, TADAKUMA K, KAMOI T, et al. Compliant distributed magnetic adhesion device for wall climbing [C]//IEEE International Conference on Robotics and Automation. Roma: IEEE, 2007: 1256-1261.
|
[7] |
MAO J, QIN L, ZHANG W. Modeling and simulation of electrostatic adhesion force in concentric-ring electrode structures of multilayer dielectrics [J]. The Journal of Adhesion, 2016, 92(4): 319-340.
|
[8] |
CHEN R, HUANG Y, TANG Q, et al. Modelling and analysis of the electrostatic adhesion performance considering a rotary disturbance between the electrode panel and the attachment substrate [J]. Journal of Adhesion Science and Technology, 2016, 30(21): 2301-2315.
|
[9] |
CHEN R, HUANG Y, TANG Q. An analytical model for electrostatic adhesive dynamics on dielectric substrates [J]. Journal of Adhesion Science and Technology, 2017, 31(11): 1229-1250.
|
[10] |
LHERNOULD M S, DELCHAMBRE A, RE′GNIER S, et al. Electrostatic forces in micromanipulations: Review of analytical models and simulations including roughness [J]. Applied Surface Science, 2007, 253(14): 6203-6210.
|
[11] |
LHERNOULD M S, BERKE P, MASSART T J, et al. Variation of the electrostatic adhesion force on a rough surface due to the deformation of roughness asperities during micromanipulation of a spherical rigid body [J]. Journal of Adhesion Science and Technology, 2009, 23(9): 1303-1325.
|
[12] |
REN Z, CENDES Z. Shell elements for the computation of magnetic forces [J]. IEEE Transactions on Magnetics, 2001, 37(5): 3171-3174.
|
[13] |
FU W N, ZHOU P, LIN D, et al. Magnetic force computation in permanent magnets using a local energy coordinate derivative method [J]. IEEE Transactions on Magnetics, 2004, 40(2): 683-686.
|
[14] |
FU W N, HO S L, CHEN N N. Application of shell element method to 3D finite-element computation of the force on one body in contact with others [J]. IEEE Transactions on Magnetics, 2010, 46(11): 3893-3898.
|
[15] |
CHOI H S, PARK I H, LEE S H. Concept of virtual air gap and its applications for force calculation [J]. IEEE Transactions on Magnetics, 2006, 42(4): 663-666.
|
[16] |
SEO J H, CHOI H S. Computation of magnetic contact forces [J]. IEEE Transactions on Magnetics, 2014, 50(2): 525-528.
|
[17] |
CHOI H S, LEE S H, KIM Y S, et al. Implementation of virtual work principle in virtual air gap [J]. IEEE Transactions on Magnetics, 2008, 44(6): 1286-1289.
|
[18] |
YOO J, CHOI J S, HONG S J, et al. Finite element analysis of the attractive force on a Coulomb type electrostatic chuck [C]//2007 International Conference on Electrical Machines and Systems (ICEMS). Seoul: IEEE, 2007: 1371-1375.
|
[19] |
ZHU Y Y, CESCOTTO S. Transient thermal and thermomechanical analysis by mixed FEM [J]. Computers & Structures, 1994, 53(2): 275-304.
|
[20] |
DRIESEN J, BELMANS R J M, HAMEYER K. Finite-element modeling of thermal contact resistances and insulation layers in electrical machines [J]. IEEE Transactions on Industry Applications, 2001, 37(1): 15-20.
|