[1] Ijspeert A J. Central pattern generators for locomotion control in animals and robots: A review [J]. Neural Networks, 2008, 21(4): 642-653.[2] Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation [J]. Biological Cybernetics, 1985, 52(6): 367-376.[3] Liu C, Chen Q, Wang D. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots [J]. IEEE Transactions on Systems, Man, and Cybernetics. Part B: Cybernetics, 2011, 41(3): 867-880.[4] Righetti L, Ijspeert A J. Pattern generators with sensory feedback for the control of quadruped locomotion [C]// Proceedings of the 2008 IEEE International Conference on Robotics and Automation. USA: IEEE, 2008: 819-824.[5] Santos C P, Matos V. Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach [J]. Robotics and Autonomous Systems,2011, 59(9): 620-634.[6] Fukuoka Y, Kimura H, Cohen A H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts [J]. The International Journal of Robotics Research, 2003, 22(3-4): 187-202.[7] Liu C, Chen Y, Zhang J, et al. CPG driven locomotion control of quadruped robot [C]//Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics. USA: IEEE, 2009: 2368-2373.[8] Inagaki S, Yuasa H, Suzuki T, et al. Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control [J].Robotics and Autonomous Systems, 2006, 54(2): 118-126.[9] Zhao W, Hu Y, Zhang L, et al. Design and CPGbased control of biomimetic robotic fish [J]. IET Control Theory and Applications, 2009, 3(3): 281-293.[10] Crespi A, Ijspeert A J. Online optimization of swimming and crawling in an amphibious snake robot [J]. IEEE Transactions on Robotics, 2008, 24(1): 75-87.[11] Wu X, Ma S. CPG-based control of serpentine locomotion of a snake-like robot [J]. Mechatronics, 2010,20(2): 326-334.[12] Kamimura A, Kurokawa H, Yoshida E, et al. Automatic locomotion design and experiments for a modular robotic system [J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(3): 314-325.[13] Ishiguro A, Fujii A, Hotz P E. Neuromodulated control of bipedal locomotion using a polymorphic CPG circuit [J]. International Society for Adaptive Behavior,2003, 11(1): 7-18.[14] Taga G. A model of the neuron-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance [J]. Biological Cybernetics,1998, 78(1): 9-17.[15] Kimura H, Fukuoka Y, Cohen A H. Biologically inspired adaptive dynamic walking of a quadruped robot [C]//Proceedings of the 8th International Conference on the Simulation of Adaptive Behavior. USA: MIT,2004: 201-210.[16] Matsubara T, Morimoto J, Nakanishi J, et al. Learning CPG-based biped locomotion with a policy gradient method [J]. Robotics and Autonomous Systems,2006, 54(11): 911-920.[17] Asa K, Ishimura K, Wada M. Behavior transition between biped and quadruped walking by using bifurcation[J]. Robotics and Autonomous Systems, 2009,57(2): 155-160. |