上海交通大学学报, 2025, 59(8): 1216-1224 doi: 10.16183/j.cnki.jsjtu.2023.491

电子信息与电气工程

注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测

张志远1, 胡冀苏2, 张跃跃3, 钱旭升2, 周志勇2, 戴亚康,1,2

1.徐州医科大学 医学影像学院, 江苏 徐州 221000

2.中国科学院 苏州生物医学工程技术研究所, 江苏 苏州 215163

3.苏州大学附属第二医院, 江苏 苏州 215000

Attention-Guided Multi-Task Learning for Prostate Cancer Pelvic Lymph Node Metastasis Prediction

ZHANG Zhiyuan1, HU Jisu2, ZHANG Yueyue3, QIAN Xusheng2, ZHOU Zhiyong2, DAI Yakang,1,2

1. School of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China

2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, Jiangsu, China

3. The Second Affiliated Hospital of Suzhou University, Suzhou 215000, Jiangsu, China

通讯作者: 戴亚康,研究员,博士生导师;E-mail:daiyk@sibet.ac.cn.

责任编辑: 孙伟

收稿日期: 2023-09-25   修回日期: 2023-11-8   接受日期: 2023-11-24  

基金资助: 中国科学院青年创新促进会项目(2021324)
苏州市卫健委临床重点病种诊疗专项(LCZX202001)
苏州市科技计划项目(SKY2022003)

Received: 2023-09-25   Revised: 2023-11-8   Accepted: 2023-11-24  

作者简介 About authors

张志远(1999—),硕士生,从事医学影像分析研究.

摘要

基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤分割任务为辅助任务的注意力引导多任务学习网络用于PLNM预测.首先,在肿瘤分割网络中,提出多分支各向异性大核注意力模块,通过不同分支和各向异性大卷积核的融合扩大的感受野以有效捕获肿瘤的局部和全局信息.其次,在PLNM预测网络中,设计多尺度特征交互融合注意力模块,对多尺度特征进行层次化融合筛选.在320例数据集的实验中,所提方法的精度召回曲线下面积值和受试者操作特征曲线下面积值分别为(85.44±2.04)%和 (91.86±2.18)%,优于经典的单任务分类方法和多任务方法.

关键词: 前列腺癌盆腔淋巴结转移; 多任务学习; 多分支各向异性大核注意力模块; 多尺度特征交互融合注意力模块; 多参数磁共振

Abstract

The prediction of pelvic lymph node metastasis (PLNM) based on quantitative preoperative magnetic resonance imaging features of prostate cancer primary tumor is an important reference for treatment planning. However, current prediction methods inadequately capture the heterogeneity within the primary tumor, resulting in a weak correlation between extracted quantitative image features and PLNM prediction. To address the aforementioned issues, an attention-guided multi-task learning network with tumor segmentation as an auxiliary task is proposed for PLNM prediction. First, within the tumor segmentation network, a multi-branch anisotropic large kernel attention module is introduced, where a larger receptive field is obtained through different branches and anisotropic large convolutional kernels, effectively capturing both local and global tumor information. Then, within the PLNM prediction network, a multi-scale feature interaction fusion attention module is introduced to hierarchically fuse and select features from multiple scales. The experimental results on a dataset of 320 cases demonstrate that the area under the precision-recall curve and the area under the receiver operating characteristic curve of the method proposed are (85.44±2.04)% and (91.86±2.18)%, which are superior to state-of-the-art methods and multi-task approaches.

Keywords: prostate cancer pelvic lymph node metastasis (PLNM); multi-task learning; multi-branch anisotropic large kernel attention; multi-scale feature interaction fusion attention; multiparametric magnetic resonance imaging (mpMRI)

PDF (19441KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张志远, 胡冀苏, 张跃跃, 钱旭升, 周志勇, 戴亚康. 注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测[J]. 上海交通大学学报, 2025, 59(8): 1216-1224 doi:10.16183/j.cnki.jsjtu.2023.491

ZHANG Zhiyuan, HU Jisu, ZHANG Yueyue, QIAN Xusheng, ZHOU Zhiyong, DAI Yakang. Attention-Guided Multi-Task Learning for Prostate Cancer Pelvic Lymph Node Metastasis Prediction[J]. Journal of Shanghai Jiaotong University, 2025, 59(8): 1216-1224 doi:10.16183/j.cnki.jsjtu.2023.491

前列腺癌是常见的恶性肿瘤之一[1],在根治性前列腺切除术中,高达15%的患者[2]存在盆腔淋巴结转移(pelvic lymph node metastasis, PLNM),PLNM预示着生化复发和远处转移,影响前列腺癌分期及其预后[3].因此,术前准确预测PLNM患者可以辅助医生确定哪些患者需要在前列腺切除术中进行盆腔淋巴结清扫术,从而制定手术计划和治疗方案,平衡患者的风险与收益,这对患者的预后至关重要.

多参数磁共振(multiparametric magnetic resonance imaging, mpMRI)已被广泛用于评估前列腺肿瘤分期以及PLNM预测[4-5],肿瘤原发灶的位置信息和形态特征可以提高PLNM预测性能[6-8].如Liu等[9]基于扩散加权图像(diffusion weighted imaging, DWI)的影像组学特征构建多元逻辑回归模型,进行术前PLNM预测.Zheng等[10]将T2加权图像(T2-weighted imaging, T2WI)和表观弥散系数(apparent diffusion coefficient, ADC)图像中提取的前列腺肿瘤原发灶区域的影像组学特征与临床特征进行整合,构建支持向量机模型进行PLNM预测.Hou等[11]通过整合临床病理信息、影像报告、mpMRI影像组学特征和深度学习特征,建立了一个PLNM风险计算器,以获得关于是否进行扩展盆腔淋巴结清扫术的精确决定.然而,由于现有预测方法对肿瘤原发灶内部的异质性信息提取不充分,导致提取的图像定量特征与PLNM关联性不足.

多任务学习能够利用任务之间的关联性提高任务的性能,现有研究通过分割任务与分类任务相互结合提升彼此性能.如Zhou等[12]提出一种新型多任务网络,即 CMSVNet,用于乳腺超声图像中乳腺肿瘤的联合分割和良恶性分类.Cheng等[13]提出一种基于磁共振成像的全自动多模态多任务框架,即 MTTU-Net,用于同时进行胶质瘤分割和异柠檬酸脱氢酶基因分型.Lai等[14]提出一种先验知识感知融合网络,即 PKAF-Net,以准确实现大血管侵犯预测.现有多任务方法分割网络的感受野有限并且忽略了不同尺度的肿瘤特征.

本文开发了一种注意力引导的多任务网络,通过整合来自前列腺肿瘤分割网络中小尺度和大尺度特征,提取肿瘤的局部和全局空间信息,从而提升前列腺癌PLNM预测精度.该网络包括两部分:一个基于多分支各向异性大核注意力模块的前列腺肿瘤分割网络,用来捕捉不同感受野下的原发肿瘤内部异质性的局部和全局特征;以及一个基于多尺度特征交互融合注意力模块的PLNM预测网络.该预测网络有选择地利用多尺度特征来细化单尺度特征,通过对相邻尺度特征中每个像素进行加权,确保充分的多尺度特征融合,并筛选出高鉴别性的分类特征.最后,使用加权的多任务损失函数来平衡分割和分类任务的性能.在320例前列腺癌数据集上的实验结果显示,该方法在PLNM预测方面具有较好的应用前景.

1 预测方法

1.1 概述

图1所示为所提三维注意力引导多任务学习的 PLNM 预测.Fn, n∈{0, 1, 2, 3, 4, 5}代表分割网络产生的粗略多尺度特征;FMn, n∈{0, 1, 2, 3, 4, 5}代表由多分支各向异性大核注意力(multi-branch anisotropic large kernel attention, MBALKA)模块获得的共享多尺度特征; FSn, n∈{1, 2, 3, 4, 5}代表由多尺度特征交互融合注意力(multi-scale feature interaction fusion attention, MSFIFA)模块得到的融合多尺度特征.三维网络以前列腺区域mpMRI影像(T2WI、ADC、DWI)为输入,以前列腺肿瘤分割结果和PLNM预测结果为输出.PLNM预测任务可视为一项分类任务,即将患者分为有或无PLNM.3D DynUnet[15]被用来作为多任务网络骨干,它可以根据数据集的特点配置各向异性的卷积核和合适的下采样步幅,从而获取不同分辨率的粗略多尺度特征.

图1

图1   多任务网络结构

Fig.1   Structure of multi-task network


1.2 基于MBALKA模块的前列腺肿瘤分割网络

在多任务网络中,PLNM预测与前列腺肿瘤分割任务相结合,以探索肿瘤内部异质性.肿瘤分割网络如图1(a)所示,左半部分是编码器,为分割和分类任务提取共同特征;右半部分是解码器,通过跳跃连接接收共同特征并进行肿瘤分割.MBALKA模块的目标是充分挖掘不同尺度特征中肿瘤的局部和全局三维空间信息,其设计灵感来源于大核注意力[16],它吸收了卷积和自注意力[17]的局部结构信息和长程依赖性等优点,虽然大核注意力取得了不错的效果,但忽略了不同感受野和不同尺度特征聚合的作用.与大核注意力不同,本文不仅将大卷积核推广到多分支结构,还在不同分支中设置不同尺寸(图1(a)中分支颜色不同表示结构不同)的各向异性卷积核,并引入注意力机制,从而同时提取不同感受野中肿瘤的局部和全局特征.此外,根据不同尺度设置了不同的分支,以进一步丰富感受野.所设计的MBALKA模块嵌入了自上而下的特征融合策略,以有效地整合高层次的语义信息和低层次的细节信息,并通过不同尺寸各向异性的大卷积核形成具有不同感受野的多分支注意特征池,具体结构如图2所示.图中:fn表示第n个MBALKA模块;“upsample”代表上采样操作;${F}_{0}^{\mathrm{i}\mathrm{n}}$为通过自上而下在尺度0获得的中间特征;d为扩张系数.

图2

图2   MBALKA模块结构

Fig.2   Structure of MBALKA module


图2(a)展示了MBALKA0结构,其中包括多分支特征池的所有细节.MBALKA1和MBALKA2与MBALKA0结构相同,由于深层特征图尺寸较小,过大的卷积核会获得较多的无关信息,所以为了适应不同尺度特征图的尺寸,MBALKA3只保留3个分支Branch1~Branch3,MBALKA4只保留两个分支Branch1和Branch2.图2(b)为MBALKA0中Branch2结构,通过组合3×3×1的深度卷积(depth-wise convolution,DWConv)、5×5×3的深度扩张卷积(depth-wise dilation convolution,DWDConv)和1×1×1的通道卷积(point-wise convolution,PWConv),形成近似一个9×9×5的大卷积核,从而获取更大的感受野.本文MBALKA模块能够提取相邻尺度中肿瘤的局部和全局的特征,其在不同尺度特征下的特征提取过程如下:

${F}_{n}^{in}$=$\left\{\begin{array}{ll}{F}_{n},& n=5\\ {F}_{n}+\mathrm{u}\mathrm{p}\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\left({{F}^{\mathrm{M}}}_{\mathrm{n}+1}\right),& n\ne 5\end{array}\right.$
FMn=$\left\{\begin{array}{ll}{F}_{n},& n=5\\ {F}_{n}+f\left({F}_{n}^{in}\right),& n\ne 5\end{array}\right.$
fn=$\left\{\begin{array}{ll}\stackrel{2}{\sum _{i=1}}{f}_{n}^{i}& n=4\\ \stackrel{3}{\sum _{i=1}}{f}_{n}^{i}& n=3\\ \stackrel{4}{\sum _{i=1}}{f}_{n}^{i}& n=0,\mathrm{ }1,\mathrm{ }2\end{array}\right.$
$\begin{array}{l}f_{n}^{i}= \\\operatorname{Sigmoid}\left(\operatorname{PWConv}\left(\operatorname{DWDConv}\left(\operatorname{DWConv}\left(\boldsymbol{F}_{n}^{\text {in }}\right)\right)\right)\right) \\\boldsymbol{F}_{n}^{\text {in }}\end{array}$

式中:${F}_{n}^{in}$ 为通过自上而下在尺度n获得的中间特征;${f}_{n}^{i}$表示第n个MBALKA模块的第i个分支.

1.3 基于MSFIFA模块的PLNM预测网络

为了更好地利用由MBALKA模块产生的共享多尺度特征,提出基于MSFIFA模块的PLNM预测网络(见图1(b)).PLNM预测网络在解码路径中包含5个MSFIFA模块.与其他只提取中间层特征进行分类任务的多任务网络相比[12-13],本文将所有尺度的特征用于分类任务.具体来说,首先在自下而上的方向上串联相邻尺度之间的特征,然后应用MSFIFA模块来指导当前尺度上有利于PLNM预测的原发肿瘤特征的表达.FMn, n∈{0, 1, 2, 3, 4, 5}经过MSFIFA模块得到的融合多尺度特征为FSn, n∈{1, 2, 3, 4, 5},FSn表示为

FSn=f(FMn, downsample(FMn-1))
Pc=softmax(PGA(FSn))

式中:“downsample”代表下采样操作;f(·)代表 MSFIFA 模块;PGA代表全局平均池化(GAP)操作;Pc代表第c类样本的输出概率.

虽然MBALKA模块获得了共享多尺度特征,但小尺度特征中的高层次语义信息和大尺度特征中丰富的细节信息在相互转移时不可避免地会受到来自非目标区域的噪声干扰.因此,设计MSFIFA模块,一方面进一步突出原发肿瘤的特征,另一方面通过对每个像素加权来确保充分的多尺度特征融合并筛选出高鉴别性的分类特征.

图3显示了MSFIFA模块的详细结构,两个输入特征图${F}_{\mathrm{n}-1}^{M\text{'}}$∈RC×H×W×D(${F}_{\mathrm{n}-1}^{M\text{'}}$FMn-1下采样后的特征图)和FMn∈RC×H×W×D通过通道连接后,学习两个映射函数M(1)M(2),从而建立局部和全局的特征互补关系,其中C为通道数,HWD分别为特征图的高、宽、深.具体来说,M(1)M(2)使用GAP层来提炼全局对应关系,使用3×3×3卷积来捕获局部细节特征.然后将输出利用通道连接和3×3×3卷积产生两个初始响应图后经过softmax层归一化,得到ω0ω1,且ω0+ω1=1.需要注意的是,在串联前将GAP层的输出上采样为H×W×D.MSFIFA模块计算两个像素级响应图以减少冗余特征.最后,空间权重因子ω0ω1分别与特征图进行元素相乘后相加,得到深度注意力引导的融合多尺度特征.因此,整个特征聚合可以被表述为

$\boldsymbol{F}_{n}^{\mathrm{S}}=\omega_{1} \otimes \boldsymbol{F}_{n-1}^{\mathrm{M}}+\omega_{0} \otimes \boldsymbol{F}_{n-1}^{\mathrm{M}^{\prime}}$

图3

图3   MSFIFA模块结构

Fig.3   Structure of MSFIFA module


1.4 多任务总损失

总损失函数由两部分组成,包括前列腺肿瘤分割的分割损失和PLNM预测的分类损失.对于前列腺肿瘤分割,使用一种混合损失函数,由Dice Loss(LDice)和Focal Loss (LFocal)函数组成.对于PLNM预测任务,选择交叉熵损失函数(LCE)作为分类损失.目前,常见的多任务学习方法是优化所有任务的线性加权损失并求解最小值.然而,这种方法权重参数设置繁琐.为了减轻分割任务和分类任务之间由于权重设置不当导致的分类精度降低的影响,采用基于不确定性的方法[18]来自适应权衡前列腺肿瘤分割和PLNM预测任务的损失.最后,多任务总损失函数定义如下:

$\begin{aligned}L_{\text {Total }}= & \frac{1}{2 \sigma_{\text {Seg }}^{2}}\left(L_{\text {Dice }}+L_{\text {Focal }}\right)+ \\& \frac{1}{2 \sigma_{\text {Class }}^{2}} L_{\mathrm{CE}}+\log \sigma_{\text {Seg }} \sigma_{\text {Class }}\end{aligned}$

式中,σSegσClass为不确定权重,通过网络进行学习.实际应用中,σSegσClass先被初始化为1,然后在训练阶段通过迭代进行自适应更新.

2 数据和实施细节

2.1 数据集

本文数据集由苏州大学附属第二人民医院通过飞利浦3.0 T mpMRI收集,面内分辨率为0.31~0.49 mm,切片间距为3~3.5 mm;包含320个mpMRI图像样本,收集时间为2015年1月~2022年3月,并进行随访至2023年3月.同时满足以下条件的患者被接受:①临床或病理诊断为前列腺癌;②诊断时均保留3种模态(T2WI、ADC、DWI)的 mpMRI 影像;③患者的穿刺病理和手术病理均无缺失.该研究通过了苏州大学附属第二医院伦理委员会的审批(批文编号:JD-HG-2021-31)并已获得患者的书面知情同意,他们的匿名信息将在本文中发表.分割的真实标签由3位经验丰富的放射科医生基于手术病理结果使用ITK-SNAP软件进行注释.分类标签来自医生提供的手术病理结果的统计数据,其中229个样本为PLNM阴性,剩余91个样本为 PLNM 阳性.

2.2 数据预处理

使用开源的Elastix软件[19]进行3种模态(T2WI、ADC、DWI)的图像配准.为了减少前列腺以外背景区域的干扰,通过图4所示流程裁剪出前列腺感兴趣区域.首先,使用经过前列腺数据预训练的前列腺自动分割网络nn-Unet[20]获得前列腺分割标签;然后,根据前列腺分割标签生成前列腺边界框并外扩1 cm;最后,将每个样本的图像裁剪出前列腺感兴趣区域.利用双线性插值将所有样本的mpMRI影像重新采样到样本切片间距的中等分辨率(0.464, 0.464, 3) mm,为应对三维数据对计算机内存消耗的限制,将图像调整大小到128像素×128像素×20像素,为了提高模型的泛化能力,训练图像被归一化为(0, 1).

图4

图4   感兴趣区域裁剪流程

Fig.4   Flow chart of cropping region of interest


2.3 训练过程

提出的模型在PyTorch平台上实现,使用NVIDIA GeForce 3090Ti GPU(24 GB),采用五折交叉验证策略进行训练,每个类标签的比例相同.为体现客观性,所有实验均采用上述策略;所有模型均使用Adam优化器,初始学习率为1×10-4,权重衰减为1×10-5.每个GPU的批大小(batch size)设为4,迭代轮次(epoch)最大值设为100.此外,数据增强包括添加随机噪声、随机翻转和随机旋转.

2.4 评价指标

由于数据集存在类别不平衡的现象,所以采用精度召回曲线下面积(area under the precision-recall curve,AUPRC)、受试者操作特征曲线下面积(area under the receiver operating characteristic curve,AUROC)、敏感性(sensitivity,SEN)、特异性(specificity,SPE)、准确率(accuracy,ACC)和F1值等指标对PLNM预测结果进行定量评估,这在解决类不平衡问题上已被证明是有效的[21-22].

3 实验结果与分析

为了证明方法对PLNM预测的有效性,进行4组实验.实验中均使用相同的数据预处理和统一的训练策略重新训练所有模型,并调整训练参数以获得最佳性能.

3.1 消融实验

3.1.1 不同组件的有效性

使用相同的分割网络进行消融实验.其中,基线网络为图1(a)中去掉 MBALKA 模块并将图1(b)中PLNM预测网络中的MSFIFA模块使用通道连接代替.如表1所示,与基线相比,MBALKA和MSFIFA模块均能够改善多任务网络的性能.本文方法在所有指标上都取得了较好的性能,各指标分别比基线值高6.53个、1.75个、6.72个、3.06个、4.08个、7.37个百分点.这表明,MBALKA模块和MSFIFA模块可以加强原发肿瘤特征学习,而且能够从不同尺度的特征中自适应地选择鉴别特征,提升了PLNM预测性能.

表1   所提方法不同组件的消融分析

Tab.1  Ablation analysis of different components in proposed method

方法(平均值±方差)/%
AUPRCAUROCSENSPEACCF1
基线78.91±6.0790.11±3.2167.02±10.4291.27±2.6684.37±3.9970.73±7.94
基线+MBALKA83.26±4.1391.13±1.7978.07±4.8586.46±6.0184.06±4.4873.15±5.94
基线+MSFIFA81.16±5.2190.82±1.7074.74±15.0987.74±6.2284.04±2.8372.96±6.47
基线+MBALKA+MSFIFA85.44±2.0491.86±2.1873.74±12.2094.33±3.2988.45±2.3078.10±5.38

新窗口打开| 下载CSV


3.1.2 多任务的有效性

为了验证多任务网络的有效性和优越性,进行单任务的PLNM预测实验,并比较了多任务网络中的不确定性权重和等权重损失策略,如表2所示.结果表明,不确定权重有助于平衡分割和分类任务,避免了分割任务在所提方法的训练中占主导地位,从而进一步提高PLNM预测性能.总的来说,所提方法与单独分类任务相比,在AUPRC、AUROC、SEN、SPE、ACC和F1等指标中分别获得了7.31个、2.32个、17.66个、2.22个、6.59个、14.50个百分点的提升,这可能主要是由于原发肿瘤的位置信息和内部异质性特征与PLNM密切相关,从而增强了PLNM预测性能.

表2   所提方法单任务和多任务的消融分析

Tab.2  Ablation analysis of single-task and multi-task in proposed method

方法(平均值±方差)/%
AUPRCAUROCSENSPEACCF1
单任务78.13±5.2089.54±2.5056.08±8.4492.11±4.6581.86±2.9863.60±5.77
多任务 (等权重)82.82±4.5490.69±2.5469.30±16.7390.80±5.7284.68±3.0671.25±7.84
多任务(不确定权重)85.44±2.0491.86±2.1873.74±12.2094.33±3.2988.45±2.3078.10±5.38

新窗口打开| 下载CSV


将多任务网络得到的梯度加权类激活图(Grad-CAM)可视化,如图5所示.其中,图5(a)~5(c)为 mpMRI 影像;黄色箭头表示肿瘤区域;图5(d)5(e)为Grad-CAMs, 分别通过单任务网络和本文多任务网络获得.图5显示了多任务网络对肿瘤的关注程度,可知单任务网络关注的区域会出现位置偏差,并且关注的范围较为分散;而多任务网络对肿瘤区域关注更准确,对肿瘤内部异质性信息挖掘更充分,因此可以获得更好的PLNM预测结果.

图5

图5   mpMRI影像的二维可视化和相应的Grad-CAMs

Fig.5   Visualization of 2D mpMRI images and corresponding Grad-CAMs


3.2 对比其他经典的单任务分类网络

将多任务网络与其他经典单任务分类网络进行比较,结果如表3所示.所提方法在PLNM预测任务中获得了相当显著的分类性能,优于其他经典单任务分类方法的性能.与单任务方法SeResNet50、CBAMResNet50、DenseNet121、EfficientNet和InceptionV4等相比,所提方法的平均AUPRC提升3.96个百分点,平均AUROC提升2.17个百分点,平均SEN提升5.40个百分点,平均SPE提升5.86个百分点,平均ACC提升5.69个百分点,平均F1提升8.71个百分点.这些单任务方法直接从输入图像中学习与分类任务有关的特征,不可避免地会捕捉到不可靠的特征,从而降低PLNM预测精度.

表3   所提方法与其他经典单任务分类方法对比

Tab.3  Comparison of proposed method and other existing state-of-the-art single-task methods

方法(平均值±方差)/%
AUPRCAUROCSENSPEACCF1
CBAMResNet50[23]78.83±5.0189.33±3.6858.25±12.1190.79±5.1281.55±4.4463.88±9.64
DenseNet121[24]82.03±3.3890.24±1.7067.08±11.5890.35±6.2583.73±2.7669.87±5.14
EfficientNet[25]80.10±6.6888.25±3.8464.74±5.5587.36±11.0080.93±8.6766.82±10.87
InceptionV4[26]83.15±2.1390.31±1.2178.01±9.6481.71±10.1180.67±6.2870.02±6.34
SeResNet50[27]83.30±4.8090.30±3.1873.63±2.4192.14±4.5086.88±3.5876.34±5.13
本文方法85.44±2.0491.86±2.1873.74±12.2094.33±3.2988.45±2.3078.10±5.38

新窗口打开| 下载CSV


3.3 对比其他多任务方法

为了进一步验证所提方法的有效性,将其与其他先进的多任务网络进行比较,结果如表4所示.本文方法在大部分指标上均优于其他3种多任务方法,尤其在AUPRC、SPE、ACC和F1等指标上,提升效果明显, 这表明所提方法实现了更好的PLNM预测性能.

表4   所提方法与其他3种多任务方法对比

Tab.4  Comparison of proposed method and other three multi-task methods

方法(平均值±方差)/%
AUPRCAUROCSENSPEACCF1
CMSVNet[12]82.68±4.5389.81±2.4281.29±8.4980.32±6.4980.62±2.4470.49±1.49
MTTU-Net[13]81.80±6.5391.65±2.4184.62±11.3785.07±11.0084.96±5.7976.58±5.30
PKAF-Net[14]78.68±5.1688.52±2.0369.12±11.7691.29±5.0885.00±2.1072.09±4.67
多任务 (不确定权重)85.44±2.0491.86±2.1873.74±12.2094.33±3.2988.45±2.3078.10±5.38

新窗口打开| 下载CSV


4 结语

针对前列腺肿瘤内部异质性信息提取不充分导致的PLNM预测精度较低等问题,提出一种注意力引导多任务学习网络用于PLNM预测.该网络通过共享特征学习,利用任务之间的关联性,能够准确关注肿瘤区域,从而挖掘肿瘤内部异质性特征,此外,通过MBALKA模块提取高层次的语义信息和低层次丰富的细节信息.在PLNM预测网络中通过将共享特征中大尺度特征的丰富细节信息转移到小尺度特征中,获取相应的鉴别性特征.MSFIFA模块则可以有选择地利用多尺度特征来细化单尺度特征.通过捕捉目标的上下文信息,MSFIFA模块能够有效融合不同尺度的特征,从而提高 PLNM 预测的精度.

尽管本文提出的方法在PLNM预测任务中取得了较好的性能,但当前研究的数据来自单一中心,且PLNM阳性患者数量较少,这种数据不平衡的状况可能会进一步限制模型的性能.因此,在未来的工作中,将收集更多PLNM阳性患者数据,以及来自多中心和不同扫描设备的数据,以提高模型的通用性.

参考文献

SIEGEL R L, MILLER K D, FUCHS H E, et al.

Cancer statistics, 2022

[J]. CA: A Cancer Journal for Clinicians, 2022, 72(1): 7-33.

[本文引用: 1]

WILCZAK W, WITTMER C, CLAUDITZ T, et al.

Marked prognostic impact of minimal lymphatic tumor spread in prostate cancer

[J]. European Urology, 2018, 74(3): 376-386.

DOI:S0302-2838(18)30423-8      PMID:29908878      [本文引用: 1]

Nodal metastasis (N1) is a strong prognostic parameter in prostate cancer; however, lymph node evaluation is always incomplete.To study the prognostic value of lymphatic invasion (L1) and whether it might complement or even replace lymph node analysis in clinical practice.Retrospective analysis of pathological and clinical data from 14 528 consecutive patients.Radical prostatectomy.The impact of L1 and N1 on patient prognosis was measured with time to biochemical recurrence as the primary endpoint.Nodal metastases were found in 1602 (12%) of 13 070 patients with lymph node dissection. L1 was seen in 2027 of 14 528 patients (14%) for whom lymphatic vessels had been visualized by immunohistochemistry. N1 and L1 continuously increased with unfavorable Gleason grade, advanced pT stage, and preoperative prostate-specific antigen (PSA) values (p<0.0001 each). N1 was found in 4.3% of 12 501 L0 and in 41% of 2027 L1 carcinomas (p<0.0001). L1 was seen in 11% of 9868 N0 and in 61% of 1360 N1 carcinomas (p<0.0001). Both N1 and L1 were linked to PSA recurrence (p<0.0001 each). This was also true for 17 patients with isolated tumor cells (ie, <200 unequivocal cancer cells without invasive growth) and 193 metastases ≤1mm. Combined analysis of N and L status showed that L1 had no prognostic effect in N1 patients but L1 was strikingly linked to PSA recurrence in N0 patients. N0L1 patients showed a similar outcome as N1 patients.Analysis of lymphatic invasion provides comparable prognostic information than lymph node analysis. Even minimal involvement of the lymphatic system has pivotal prognostic impact in prostate cancer. Thus, a thorough search for lymphatic involvement helps to identify more patients with an increased risk for disease recurrence.Already minimal amounts of tumor cells inside the lymph nodes or intraprostatic lymphatic vessels have a severe impact on patient prognosis.Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.

蒋璋栋, 吴开杰.

前列腺癌淋巴结转移分子机制的研究进展

[J]. 现代泌尿外科杂志, 2022, 27(1): 79-83.

[本文引用: 1]

JIANG Zhangdong, WU Kaijie.

Progress of molecular mechanism leading to lymph node metastasis in prostate cancer

[J]. Journal of Modern Urology, 2022, 27(1): 79-83.

[本文引用: 1]

YAKAR D, DEBATS O A, BOMERS J G R, et al.

Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer

[J]. Journal of Magnetic Resonance Imaging: JMRI, 2012, 35(1): 20-31.

[本文引用: 1]

扶昭, 陈燕清, 赵春丽, .

3.0 T MR扩散加权成像ADC值及ROC曲线分析对前列腺癌淋巴结转移的诊断价值

[J]. 磁共振成像, 2021, 12(2): 49-51.

[本文引用: 1]

FU Zhao, CHEN Yanqing, ZHAO Chunli, et al.

Value of 3.0 T MR diffusion-weighted imaging and ROC curve in diagnosis of lymph node metastasis in patients with prostate cancer

[J]. Chinese Journal of Magnetic Resonance Imaging, 2021, 12(2): 49-51.

[本文引用: 1]

BREMBILLA G, DELL’OGLIO P, STABILE A, et al.

Preoperative multiparametric MRI of the prostate for the prediction of lymph node metastases in prostate cancer patients treated with extended pelvic lymph node dissection

[J]. European Radiology, 2018, 28(5): 1969-1976.

DOI:10.1007/s00330-017-5229-6      PMID:29270644      [本文引用: 1]

To assess the role of preoperative multiparametric MRI (mpMRI) of the prostate in the prediction of nodal metastases in patients treated with radical prostatectomy (RP) and extended pelvic lymph node dissection (ePLND).We retrospectively analyzed 101 patients who underwent both preoperative mpMRI of the prostate and RP with ePLND at our institution. For each patient, complete preoperative clinical data and tumour characteristics at mpMRI were recorded. Final histopathologic stage was considered the standard of reference. Univariate and multivariate logistic regression analyses were performed.Nodal metastases were found in 23/101 (22.8%) patients. At univariate analyses, all clinical and radiological parameters were significantly associated to nodal invasion (all p<0.03); tumour volume at MRI (mrV), tumour ADC and tumour T-stage at MRI (mrT) were the most accurate predictors (AUC = 0.93, 0.86 and 0.84, respectively). A multivariate model including PSA levels, primary Gleason grade, mrT and mrV showed high predictive accuracy (AUC = 0.956). Observed prevalence of nodal metastases was very low among tumours with mrT2 stage and mrV<1cc (1.8%).Preoperative mpMRI of the prostate can predict nodal metastases in prostate cancer patients, potentially allowing a better selection of candidates to ePLND.• Multiparametric-MRI of the prostate can predict nodal metastases in prostate cancer • Tumour volume and stage at MRI are the most accurate predictors • Prevalence of nodal metastases is low for T2-stage and <1cc tumours • Preoperative mpMRI may allow a better selection of candidates to lymphadenectomy.

PORPIGLIA F, MANFREDI M, MELE F, et al.

Indication to pelvic lymph nodes dissection for prostate cancer: The role of multiparametric magnetic resonance imaging when the risk of lymph nodes invasion according to Briganti updated nomogram is 5

[J]. Prostate Cancer and Prostatic Diseases, 2018, 21(1): 85-91.

FURUBAYASHI N, NEGISHI T, UOZUMI T, et al.

Eliminating microscopic lymph node metastasis by performing pelvic lymph node dissection during radical prostatectomy for prostate cancer

[J]. Molecular and Clinical Oncology, 2020, 12(2): 104-110.

DOI:10.3892/mco.2019.1965      PMID:31929879      [本文引用: 1]

The oncological benefit of pelvic lymph node dissection (PLND) for prostate cancer (PCa) remains unclear. The therapeutic effect of PLND on the elimination of microscopic metastases during radical prostatectomy (RP) for PCa was examined in the current study. A total of 348 Japanese patients with high- or intermediate-risk PCa without lymph node metastasis, who underwent antegrade RP at the Kyushu Cancer Center (Fukuoka, Japan) between August 1998 and May 2013 were retrospectively analyzed. The patients were divided into the standard (obturator + internal iliac nodes) group and the expanded (standard + additional nodes) group according to the extent of PLND. Preoperative and postoperative characteristics were also analyzed to determine the factors associated with prostate-specific antigen (PSA) failure. Standard and expanded PLND were performed in 70.9% (247/348) and 29.1% (101/348) of cases, respectively. The results revealed that preoperative PSA levels were the only marked difference between the two groups. No differences were observed in the other preoperative and postoperative characteristics. Furthermore, the rate of PSA recurrence in each group did not differ to a statistically significant extent (P=0.3622). Reducing the area of dissection from expanded PLND to standard PLND significantly reduced the number of dissected lymph nodes (P<0.0001). Additionally, the PSA level, clinical tumor stage, Gleason score of the biopsy specimen, pathological tumor stage and extent of PLND were all associated with PSA recurrence, as determined via multivariate Cox hazards regression analysis (P=0.0177, P=0.0023, P=0.0027, P<0.0001 and P=0.0164, respectively). In high- and intermediate-risk patients without lymph node metastasis, a greater number of lymph nodes were dissected when the extent of dissection was greater. Furthermore, the extent of PLND was a significantly associated with PSA failure. The results indicated that PLND exerted a therapeutic effect by eliminating microscopic pelvic lymph node metastases that were not detected by routine pathological examinations.Copyright: © Furubayashi et al.

LIU X, TIAN J Y, WU J Y, et al.

Utility of diffusion weighted imaging-based radiomics nomogram to predict pelvic lymph nodes metastasis in prostate cancer

[J]. BMC Medical Imaging, 2022, 22(1): 190.

DOI:10.1186/s12880-022-00905-3      PMID:36333664      [本文引用: 1]

Preoperative pelvic lymph node metastasis (PLNM) prediction can help clinicians determine whether to perform pelvic lymph node dissection (PLND). The purpose of this research is to explore the feasibility of diffusion-weighted imaging (DWI)-based radiomics for preoperative PLNM prediction in PCa patients at the nodal level.The preoperative MR images of 1116 pathologically confirmed lymph nodes (LNs) from 84 PCa patients were enrolled. The subjects were divided into a primary cohort (67 patients with 192 positive and 716 negative LNs) and a held-out cohort (17 patients with 43 positive and 165 negative LNs) at a 4:1 ratio. Two preoperative pelvic lymph node metastasis (PLNM) prediction models were constructed based on automatic LN segmentation with quantitative radiological LN features alone (Model 1) and combining radiological and radiomics features (Model 2) via multiple logistic regression. The visual assessments of junior (Model 3) and senior (Model 4) radiologists were compared.No significant difference was found between the area under the curve (AUCs) of Models 1 and 2 (0.89 vs. 0.90; P = 0.573) in the held-out cohort. Model 2 showed the highest AUC (0.83, 95% CI 0.76, 0.89) for PLNM prediction in the LN subgroup with a short diameter ≤ 10 mm compared with Model 1 (0.78, 95% CI 0.70, 0.84), Model 3 (0.66, 95% CI 0.52, 0.77), and Model 4 (0.74, 95% CI 0.66, 0.88). The nomograms of Models 1 and 2 yielded C-index values of 0.804 and 0.910, respectively, in the held-out cohort. The C-index of the nomogram analysis (0.91) and decision curve analysis (DCA) curves confirmed the clinical usefulness and benefit of Model 2.A DWI-based radiomics nomogram incorporating the LN radiomics signature with quantitative radiological features is promising for PLNM prediction in PCa patients, particularly for normal-sized LNM.© 2022. The Author(s).

ZHENG H X, MIAO Q, LIU Y K, et al.

Multiparametric MRI-based radiomics model to predict pelvic lymph node invasion for patients with prostate cancer

[J]. European Radiology, 2022, 32(8): 5688-5699.

DOI:10.1007/s00330-022-08625-6      PMID:35238971      [本文引用: 1]

To identify which patient with prostate cancer (PCa) could safely avoid extended pelvic lymph node dissection (ePLND) by predicting lymph node invasion (LNI), via a radiomics-based machine learning approach.An integrative radiomics model (IRM) was proposed to predict LNI, confirmed by the histopathologic examination, integrating radiomics features, extracted from prostatic index lesion regions on MRI images, and clinical features via SVM. The study cohort comprised 244 PCa patients with MRI and followed by radical prostatectomy (RP) and ePLND within 6 months between 2010 and 2019. The proposed IRM was trained in training/validation set and evaluated in an internal independent testing set. The model's performance was measured by area under the curve (AUC), sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). AUCs were compared via Delong test with 95% confidence interval (CI), and the rest measurements were compared via chi-squared test or Fisher's exact test.Overall, 17 (10.6%) and 14 (16.7%) patients with LNI were included in training/validation set and testing set, respectively. Shape and first-order radiomics features showed usefulness in building the IRM. The proposed IRM achieved an AUC of 0.915 (95% CI: 0.846-0.984) in the testing set, superior to pre-existing nomograms whose AUCs were from 0.698 to 0.724 (p < 0.05).The proposed IRM could be potentially feasible to predict the risk of having LNI for patients with PCa. With the improved predictability, it could be utilized to assess which patients with PCa could safely avoid ePLND, thus reduce the number of unnecessary ePLND.• The combination of MRI-based radiomics features with clinical information improved the prediction of lymph node invasion, compared with the model using only radiomics features or clinical features. • With improved prediction performance on predicting lymph node invasion, the number of extended pelvic lymph node dissection (ePLND) could be reduced by the proposed integrative radiomics model (IRM), compared with the existing nomograms.© 2022. The Author(s), under exclusive licence to European Society of Radiology.

HOU Y, BAO J, SONG Y, et al.

Integration of clinicopathologic identification and deep transferrable image feature representation improves predictions of lymph node metastasis in prostate cancer

[J]. EBioMedicine, 2021, 68: 103395.

[本文引用: 1]

ZHOU Y, CHEN H J, LI Y F, et al.

Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images

[J]. Medical Image Analysis, 2021, 70: 101918.

[本文引用: 3]

CHENG J H, LIU J, KUANG H L, et al.

A fully automated multimodal MRI-based multi-task learning for glioma segmentation and IDH genotyping

[J]. IEEE Transactions on Medical Imaging, 2022, 41(6): 1520-1532.

[本文引用: 3]

LAI H R, FU S R, ZHANG J, et al.

Prior knowledge-aware fusion network for prediction of macrovascular invasion in hepatocellular carcinoma

[J]. IEEE Transactions on Medical Imaging, 2022, 41(10): 2644-2657.

[本文引用: 2]

FUTREGA M, MILESI A, MARCINKIEWICZ M, et al.

Optimized U-net for brain tumor segmentation

[C]// International MICCAI Brainlesion Workshop. Cham: Springer, 2022: 15-29.

[本文引用: 1]

GUO M H, LU C Z, LIU Z N, et al.

Visual attention network

[J]. Computational Visual Media, 2023, 9(4): 733-752.

[本文引用: 1]

VASWANI A, SHAZEER N, PARMAR N, et al.

Attention is all you need

[C]// Advances in Neural Information Processing Systems, New York, USA: Curran Associates Inc, 2017: 6000-6010.

[本文引用: 1]

CIPOLLA R, GAL Y, KENDALL A.

Multi-task learning using uncertainty to weigh losses for scene geometry and semantics

[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7482-7491.

[本文引用: 1]

KLEIN S, STARING M, MURPHY K, et al.

Elastix: A toolbox for intensity-based medical image registration

[J]. IEEE Transactions on Medical Imaging, 2010, 29(1): 196-205.

DOI:10.1109/TMI.2009.2035616      PMID:19923044      [本文引用: 1]

Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of population studies). A large number of methods for image registration are described in the literature. Unfortunately, there is not one method that works for all applications. We have therefore developed elastix, a publicly available computer program for intensity-based medical image registration. The software consists of a collection of algorithms that are commonly used to solve medical image registration problems. The modular design of elastix allows the user to quickly configure, test, and compare different registration methods for a specific application. The command-line interface enables automated processing of large numbers of data sets, by means of scripting. The usage of elastix for comparing different registration methods is illustrated with three example experiments, in which individual components of the registration method are varied.

ISENSEE F, JAEGER P F, KOHL S A A, et al.

nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation

[J]. Nature Methods, 2021, 18(2): 203-211.

DOI:10.1038/s41592-020-01008-z      PMID:33288961      [本文引用: 1]

Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training.

SAITO T, REHMSMEIER M.

The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets

[J]. PLoS One, 2015, 10(3): e0118432.

[本文引用: 1]

LUQUE A, CARRASCO A, MARTÍN A, et al.

The impact of class imbalance in classification performance metrics based on the binary confusion matrix

[J]. Pattern Recognition, 2019, 91: 216-231.

[本文引用: 1]

LUO Y N, WANG Z S.

An improved ResNet algorithm based on CBAM

[C]// 2021 International Conference on Computer Network, Electronic and Automation. Xi’an, China: IEEE, 2021: 121-125.

[本文引用: 1]

HUANG G, LIU Z, VAN DER MAATEN L, et al.

Densely connected convolutional networks

[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 2261-2269.

[本文引用: 1]

TAN M X, LE Q V.

EfficientNet: Rethinking model scaling for convolutional neural networks

[C]// International Conference on Machine Learning, Long Beach, USA: PMLR, 2019: 6105-6114.

[本文引用: 1]

SZEGEDY C, IOFFE S, VANHOUCKE V, et al.

Inception-v4, inception-ResNet and the impact of residual connections on learning

[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, USA: ACM, 2017: 4278-4284.

[本文引用: 1]

HU J, SHEN L, SUN G.

Squeeze-and-excitation networks

[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7132-7141.

[本文引用: 1]

/