注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测
|
|
张志远, 胡冀苏, 张跃跃, 钱旭升, 周志勇, 戴亚康
|
Attention-Guided Multi-Task Learning for Prostate Cancer Pelvic Lymph Node Metastasis Prediction
|
|
ZHANG Zhiyuan, HU Jisu, ZHANG Yueyue, QIAN Xusheng, ZHOU Zhiyong, DAI Yakang
|
|
表3 所提方法与其他经典单任务分类方法对比
|
Tab.3 Comparison of proposed method and other existing state-of-the-art single-task methods
|
|
| 方法 | (平均值±方差)/% | | AUPRC | AUROC | SEN | SPE | ACC | F1 | | CBAMResNet50[23] | 78.83±5.01 | 89.33±3.68 | 58.25±12.11 | 90.79±5.12 | 81.55±4.44 | 63.88±9.64 | | DenseNet121[24] | 82.03±3.38 | 90.24±1.70 | 67.08±11.58 | 90.35±6.25 | 83.73±2.76 | 69.87±5.14 | | EfficientNet[25] | 80.10±6.68 | 88.25±3.84 | 64.74±5.55 | 87.36±11.00 | 80.93±8.67 | 66.82±10.87 | | InceptionV4[26] | 83.15±2.13 | 90.31±1.21 | 78.01±9.64 | 81.71±10.11 | 80.67±6.28 | 70.02±6.34 | | SeResNet50[27] | 83.30±4.80 | 90.30±3.18 | 73.63±2.41 | 92.14±4.50 | 86.88±3.58 | 76.34±5.13 | | 本文方法 | 85.44±2.04 | 91.86±2.18 | 73.74±12.20 | 94.33±3.29 | 88.45±2.30 | 78.10±5.38 |
|
|
|