Journal of Shanghai Jiaotong University >
Robustly Coordinated Operation for Flexible Resources in Low-Carbon Park with High Penetration of Wind Power
Received date: 2023-06-25
Revised date: 2023-08-06
Accepted date: 2023-09-18
Online published: 2023-11-03
In order to meet the challenges of operational reliability and economy in the low-carbon park caused by the uncertainty of wind power output, a multi-timescale robustly coordinated operation scheme is proposed to minimize the integrated electricity-carbon operation cost in the low-carbon park, where the diverse regulation capabilities of the flexible resources, such as hydrogen, natural gas, and electrochemical energy storages are fully utilized. The first stage of the proposed operation scheme is the day-ahead decision stage, which considers the multi-timescale fluctuation of wind power output and load demand, and formulates the robust scheduling commands for hydrogen, natural gas, and electrochemical energy storage. The second stage is the intra-day decision stage, which combines the short-term forecast results of wind power output and load demand to dynamically adjust the wind turbine power scheduling commands. The day-ahead decision is an adaptive robust optimization problem, which is solved by the column-and-constraint generation (C&CG) algorithm, while the intra-day decision is a deterministic optimization problem, which is solved by the linear programming algorithm. Finally, this paper proposes an operation simulation model to validate the effectiveness of the operation scheme by combining the hourly and daily operation data of wind power and the load demand in a practical low-carbon park. The simulation results show that the proposed method can effectively improve the operational economy and reliability of the low carbon park with a high penetration of wind power.
MENG Yu , GUO Rui , SHI Zichuan , XUE Junyi , Lü Jiawen , FAN Feilong . Robustly Coordinated Operation for Flexible Resources in Low-Carbon Park with High Penetration of Wind Power[J]. Journal of Shanghai Jiaotong University, 2025 , 59(2) : 165 -174 . DOI: 10.16183/j.cnki.jsjtu.2023.262
[1] | QIU H F, GU W, XU Y L, et al. Tri-level mixed-integer optimization for two-stage microgrid dispatch with multi-uncertainties[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3636-3647. |
[2] | 隋鑫, 卢盛阳, 苏安龙, 等. 计及风电和柔性负荷的核电多目标优化调度研究[J]. 中国电机工程学报, 2019, 39(24): 7232-7241. |
SUI Xin, LU Shengyang, SU Anlong, et al. Research on multi-objective optimal scheduling of nuclear power considering wind power and flexible load[J]. Proceedings of the CSEE, 2019, 39(24): 7232-7241. | |
[3] | 林顺富, 倪凌凡, 姜恩宇, 等. 计及风电出力不确定性的海上孤岛微电网动态激励优化调度[J]. 电网技术, 2023, 47(6): 2353-2369. |
LIN Shunfu, NI Lingfan, JIANG Enyu, et al. Dynamic excitation optimization scheduling of offshore isolated microgrid with uncertainty of wind power[J]. Power System Technology, 2023, 47(6): 2353-2369. | |
[4] | 孙鹤旭, 李争, 陈爱兵, 等. 风电制氢技术现状及发展趋势[J]. 电工技术学报, 2019, 34(19): 4071-4083. |
SUN Hexu, LI Zheng, CHEN Aibing, et al. Current status and development trend of hydrogen production technology by wind power[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4071-4083. | |
[5] | 何光层, 张栋梁, 朱红杰, 等. 考虑风储协调运行的频率控制策略研究[J]. 电工技术, 2020(11): 9-13. |
HE Guangceng, ZHANG Dongliang, ZHU Hongjie, et al. Study on frequency control strategy considering coordinated operation of wind and storage[J]. Electric Engineering, 2020(11): 9-13. | |
[6] | 刘艳, 王建涛, 王文杰. 计及静态电压稳定性的含氢储能电力系统鲁棒优化调度[J]. 华北电力大学学报(自然科学版), 2025, 52(1): 22-36. |
LIU Yan, WANG Jiantao, WANG Wenjie. Robust optimal scheduling of power systems with hydrogen energy storage regarding static voltage stability[J]. Journal of North China Electric Power University (Natural Science Edition), 2025, 52(1): 22-36. | |
[7] | 荆涛, 陈庚, 王子豪, 等. 风光互补发电耦合氢储能系统研究综述[J]. 中国电力, 2022, 55(1): 75-83. |
JING Tao, CHEN Geng, WANG Zihao, et al. Research overview on the integrated system of wind-solar hybrid power generation coupled with hydrogen-based energy storage[J]. Electric Power, 2022, 55(1): 75-83. | |
[8] | 支欣, 岳福音, 葛玉林. 综合能源系统的运行优化配置分析[J]. 自动化与仪器仪表, 2020(8): 132-137. |
ZHI Xin, YUE Fuyin, GE Yulin. Analysis on optimal allocation of comprehensive energy system[J]. Automation & Instrumentation, 2020(8): 132-137. | |
[9] | 王伟, 贺彬, 张爱芳, 等. 电池储能协同火电机组参与系统调频控制策略研究[J]. 中国测试, 2022, 48 (Sup.2): 1-7. |
WANG Wei, HE Bin, ZHANG Aifang, et al. Research on battery energy storage in cooperation with thermal power units to participate in system frequency regulation control strategy[J]. China Measurement & Test, 2022, 48 (Sup.2): 1-7. | |
[10] | 徐桂芝, 梁丹曦, 宋洁, 等. 风-光-氢-储综合能源系统日前经济调度[J]. 现代电力, 2022, 40: 1-8. |
XU Guizhi, LIANG Danxi, SONG Jie, et al. Day-ahead economic dispatch of wind-photovoltaic-HESS-BESS integrated energy system[J]. Modern Electric Power, 2022, 40: 1-8. | |
[11] | MA Z T, TIAN T A, CUI Q, et al. Rapid sizing of a hydrogen-battery storage for an offshore wind farm using convex programming[J]. International Journal of Hydrogen Energy, 2023, 48(58): 21946-21958. |
[12] | 郭成威, 田书, 刘明杭. 含氢储能的多源联合发电系统调度研究[J]. 电子科技, 2023, 36(2): 61-66. |
GUO Chengwei, TIAN Shu, LIU Minghang. Research on dispatching of multi-source combined power generation system containing hydrogen energy storage[J]. Electronic Science and Technology, 2023, 36(2): 61-66. | |
[13] | 顾慧杰, 彭超逸, 孙书豪, 等. 风电-光伏-电制氢-抽蓄零碳电力系统短期生产模拟模型[J]. 上海交通大学学报, 2023, 57(5): 505-512. |
GU Huijie, PENG Chaoyi, SUN Shuhao, et al. Short-term production simulation model of wind power-photovoltaic-hydrogen production-zero carbon storage power system[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 505-512. | |
[14] | 王晶. 计及P2G与CCHP联供机组的微能源网多目标优化模型研究[D]. 北京: 华北电力大学, 2022. |
WANG Jing. Research on multi-objective optimization model of micro-energy network including P2G and CCHP combined power supply units[D]. Beijing: North China Electric Power University, 2022. | |
[15] | 樊国旗, 霍超, 李小腾, 等. 含P2G的多能源网优化调度研究[J]. 四川电力技术, 2022, 45(2): 67-73. |
FAN Guoqi, HUO Chao, LI Xiaoteng, et al. Research on optimal scheduling of multi-energy network with P2G[J]. Sichuan Electric Power Technology, 2022, 45(2): 67-73. | |
[16] | 孟冰冰, 郭丰慧, 胡林献, 等. 考虑天然气-电力耦合的多能源系统风电消纳分析[J]. 电力工程技术, 2019, 38(6): 2-8. |
MENG Bingbing, GUO Fenghui, HU Linxian, et al. Wind abandonment analysis of multi-energy systems considering gas-electricity coupling[J]. Electric Power Engineering Technology, 2019, 38(6): 2-8. | |
[17] | 朱海南, 王娟娟, 陈兵兵, 等. 考虑经济性与碳排放的电-气综合能源系统多目标规划[J]. 上海交通大学学报, 2023, 57(4): 422-431. |
ZHU Hainan, WANG Juanjuan, CHEN Bingbing, et al. Multi-objective planning of power-gas integrated energy system considering economy and carbon emission[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 422-431. | |
[18] | 时瑞廷, 杨贺钧, 马英浩, 等. 计及峰谷平滑效益的需求响应和电池储能系统调度联合优化策略[J]. 电力自动化设备, 2023, 43(8): 49-55. |
SHI Ruiting, YANG Hejun, MA Yinghao, et al. Joint optimization strategy of demand response and battery energy storage system dispatch considering peak-valley smoothing benefit[J]. Electric Power Automation Equipment, 2023, 43(8): 49-55. | |
[19] | 梁剑, 余虎, 杨高才, 等. 电池储能技术在风电系统调峰优化中的应用[J]. 电力信息与通信技术, 2020, 18(10): 67-73. |
LIANG Jian, YU Hu, YANG Gaocai, et al. Application of battery energy storage technology in peak shaving optimization of wind power system[J]. Electric Power Information and Communication Technology, 2020, 18(10): 67-73. | |
[20] | 易林, 张玉荣, 李杨, 等. 低碳经济下含风储联合电力系统优化调度[J]. 水电能源科学, 2018, 36(4): 213-216. |
YI Lin, ZHANG Yurong, LI Yang, et al. Optimal dispatching of power system with wind power and BESS under low-carbon economy[J]. Water Resources and Power, 2018, 36(4): 213-216. | |
[21] | 韩子娇, 那广宇, 董鹤楠, 等. 考虑灵活性供需平衡的含电转氢综合能源系统鲁棒优化调度[J]. 电力系统保护与控制, 2023, 51(6): 161-169. |
HAN Zijiao, NA Guangyu, DONG Henan, et al. Robust optimal operation of integrated energy system with P2H considering flexibility balance[J]. Power System Protection and Control, 2023, 51(6): 161-169. | |
[22] | 顾雪平, 白岩松, 李少岩, 等. 考虑风电不确定性的电力系统恢复全过程两阶段鲁棒优化方法[J]. 电工技术学报, 2022, 37(21): 5462-5477. |
GU Xueping, BAI Yansong, LI Shaoyan, et al. Two stage robust optimization method for the whole-process power system restoration considering wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5462-5477. | |
[23] | 岑有奎, 任建文, 张豪林. 基于氢储能的含大规模风电电力系统经济调度[J]. 科学技术与工程, 2022, 22(20): 8727-8733. |
CEN Youkui, REN Jianwen, ZHANG Haolin. Economic dispatch of power system containing large-scale wind power based on hydrogen energy storage[J]. Science Technology and Engineering, 2022, 22(20): 8727-8733. | |
[24] | 陆秋瑜, 于珍, 杨银国, 等. 考虑源荷功率不确定性的海上风力发电多微网两阶段优化调度[J]. 上海交通大学学报, 2022, 56(10): 1308-1316. |
LU Qiuyu, YU Zhen, YANG Yinguo, et al. Two-stage optimal schedule of offshore wind-power-integrated multi-microgrid considering uncertain power of sources and loads[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1308-1316. | |
[25] | Elia Transmission Belgium SA. Elia open data[DB/OL]. (2023-01-15) [2023-01-16]. https://opendata.elia.be/pages/home/. |
[26] | ZHANG C, XU Y, LI Z M, et al. Robustly coordinated operation of a multi-energy microgrid with flexible electric and thermal loads[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 2765-2775. |
[27] | FAN F L, ADITYA V, XU Y, et al. Robustly coordinated operation of a ship microgird with hybrid propulsion systems and hydrogen fuel cells[J]. Applied Energy, 2022, 312: 118738. |
[28] | BLANCO H, NIJS W, RUF J, et al. Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization[J]. Applied Energy, 2018, 232: 323-340. |
[29] | POULLIKKAS A. An overview of current and future sustainable gas turbine technologies[J]. Renewable and Sustainable Energy Reviews, 2005, 9(5): 409-443. |
[30] | IBRAHIM T K, BASRAWI F, AWAD O I, et al. Thermal performance of gas turbine power plant based on exergy analysis[J]. Applied Thermal Engineering, 2017, 115: 977-985. |
/
〈 |
|
〉 |