Journal of Shanghai Jiaotong University >
A Strategy for Smoothing Power Fluctuations of New Energy Based on Improved Power Prediction Accuracy and Market Transaction
Received date: 2023-07-12
Revised date: 2023-09-18
Accepted date: 2023-09-19
Online published: 2023-10-13
The uncertainty of new energy results in power prediction errors, causing new energy producers to bear high wind curtailment losses and deviation penalties due to bidding deviations. To address these issues, this paper proposes a feature-constrained multi-layer perception (MLP) power prediction algorithm, combined with storage-based bilateral transactions, to provide power support and reduce bidding deviations. First, the MLP model is enhanced by improving the relevancy of the hidden layers through adaptive learning, which strengthens its ability to capture nonlinear rules in input data and improves power prediction accuracy. Then, the algorithm allows for bilateral transactions between new energy producers and storage enterprise before entering the day-ahead market, helping mitigate the penalties associated with prediction errors including deviation and curtailment costs. Finally, the case study demonstrates that the feature-constrained MLP effectively improves the power prediction accuracy. Additionally, engaging in bilateral transactions with storage enterprise significantly reduces the costs incurred by new energy producers due to bid deviations.
LIANG Yiheng , YANG Dongmei , LIU Gang , YE Wenjie , YANG Yize , QIAN Tao , HU Qinran . A Strategy for Smoothing Power Fluctuations of New Energy Based on Improved Power Prediction Accuracy and Market Transaction[J]. Journal of Shanghai Jiaotong University, 2025 , 59(2) : 221 -229 . DOI: 10.16183/j.cnki.jsjtu.2023.312
[1] | 习近平. 继往开来, 开启全球应对气候变化新征程: 在气候雄心峰会上的讲话[N]. 中华人民共和国国务院公报, 2020(35): 7. |
XI Jinping. Building on past achievements and launching a new journey for global climate actions—Statement at the climate ambition summit[N]. Gazette of the State Council of the People’s Republic of China, 2020(35): 7. | |
[2] | 张扬科, 李刚, 李秀峰. 基于典型代表电站和改进SVM的区域光伏功率短期预测方法[J]. 电力自动化设备, 2021, 41(11): 205-210. |
ZHANG Yangke, LI Gang, LI Xiufeng. Short-term forecasting method for regional photovoltaic power based on typical representative power stations and improved SVM[J]. Electric Power Automation Equipment, 2021, 41(11): 205-210. | |
[3] | 葛乐, 陆文伟, 袁晓冬, 等. 基于改进相似日和ABC-SVM的光伏电站功率预测[J]. 太阳能学报, 2018, 39(3): 775-782. |
GE Le, LU Wenwei, YUAN Xiaodong, et al. Power forecasting of photovoltaic plant based on improved similar day and ABC-SVM[J]. Acta Energiae Solaris Sinica, 2018, 39(3): 775-782. | |
[4] | 马国锋. 基于机器学习的风电短期功率预测的研究与实现[D]. 呼和浩特: 内蒙古农业大学, 2021. |
MA Guofeng. Research and implementation of short-term wind power prediction based on machine learning[D]. Hohhot: Inner Mongolia Agricultural University, 2021. | |
[5] | 刘颖明, 王维, 王晓东, 等. 结合风功率预测及储能能量状态的模糊控制策略平滑风电出力[J]. 电网技术, 2019, 43(7): 2535-2543. |
LIU Yingming, WANG Wei, WANG Xiaodong, et al. A fuzzy control strategy combined with wind power prediction and energy storage SOE for smoothing wind power output[J]. Power System Technology, 2019, 43(7): 2535-2543. | |
[6] | 李大中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200-205. |
LI Dazhong, LI Yingyu. Ultra-short term wind power prediction based on deep learning and error correction[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 200-205. | |
[7] | 柳杰, 苗宗成, 王清云. 数据驱动的锂离子电池全生命周期状态参数评估[J]. 科学通报, 2023, 68(6): 644-655. |
LIU Jie, MIAO Zongcheng, WANG Qingyun. Data-driven full life-cycle state parameter assessment of Li-ion batteries[J]. Chinese Science Bulletin, 2023, 68(6): 644-655. | |
[8] | MUHAMMAD EHSAN R, SIMON S P, VENKATESWARAN P R. Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron[J]. Neural Computing & Applications, 2017, 28(12): 3981-3992. |
[9] | 张惠娟, 刘琪, 岑泽尧, 等. 基于GWO-MLP的光伏系统输出功率短期预测模型[J]. 电测与仪表, 2022, 59(7): 72-77. |
ZHANG Huijuan, LIU Qi, CEN Zeyao, et al. Short-term prediction model of output power of photovoltaic system based on GWO-MLP[J]. Electrical Measurement & Instrumentation, 2022, 59(7): 72-77. | |
[10] | 雷珽, 欧阳曾恺, 李征, 等. 平抑风能波动的储能电池SOC与滤波协调控制策略[J]. 电力自动化设备, 2015, 35(7): 126-131. |
LEI Ting, OUYANG Zengkai, LI Zheng, et al. Coordinated control of battery SOC maintaining and filtering for wind power fluctuation smoothing[J]. Electric Power Automation Equipment, 2015, 35(7): 126-131. | |
[11] | 夏清, 杨知方, 赖晓文, 等. 基于分时容量电价的新型电力现货市场设计[J]. 电网技术, 2022, 46(5): 1771-1779. |
XIA Qing, YANG Zhifang, LAI Xiaowen, et al. Electricity market design based on temporal pricing of renewable capacity[J]. Power System Technology, 2022, 46(5): 1771-1779. | |
[12] | FANG X, HU Q R, LI F X, et al. Coupon-based demand response considering wind power uncertainty: A strategic bidding model for load serving entities[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1025-1037. |
[13] | 刘传斌, 矫文书, 吴秋伟, 等. 基于模型预测控制的风储联合电场参与电网二次调频策略[J]. 上海交通大学学报, 2024, 58(1): 91-101. |
LIU Chuanbin, JIAO Wenshu, WU Qiuwei, et al. Strategy of wind-storage combined system participating in power system secondary frequency regulation based on model predictive control[J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 91-101. | |
[14] | 杨波, 汤文成, 吴福保, 等. 考虑CVaR的“新能源+储能” 电厂日前市场投标策略[J]. 电力系统保护与控制, 2022, 50(9): 93-100. |
YANG Bo, TANG Wencheng, WU Fubao, et al. Day-ahead market bidding strategy for “renewable energy + energy storage” power plants considering conditional value-at-risk[J]. Power System Protection & Control, 2022, 50(9): 93-100. | |
[15] | 马静, 沈玉明, 荣秀婷, 等. 考虑储能用户与新能源双边交易调峰服务的电力系统联合运营模式[J]. 电力自动化设备, 2023, 43(1): 113-120. |
MA Jing, SHEN Yuming, RONG Xiuting, et al. Joint operation mode of power system considering bilateral peak regulation service transaction between energy storage users and new energy[J]. Electric Power Automation Equipment, 2023, 43(1): 113-120. | |
[16] | 胡珊珊, 张乐平, 王吉. 基于多层感知机的多维条件下电能表准确度预测模型[J]. 电测与仪表, 2018, 55(16): 125-131. |
HU Shanshan, ZHANG Leping, WANG Ji. Power meter accuracy forecast model based on multidimensional conditions by multi-layer perceptions[J]. Electrical Measurement & Instrumentation, 2018, 55(16): 125-131. | |
[17] | 刘星斗. 基于WRF与深度神经网络的风电功率预测[D]. 济南: 山东大学, 2022. |
LIU Xingdou. Wind power prediction based on wrf and deep neural network[D]. Jinan: Shandong University, 2022. | |
[18] | TANG X L, LIU N C, WAN Y L, et al. Multi-step model predictive control based on online support vector regression optimized by multi-agent particle swarm optimization algorithm[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 607-612. |
[19] | 杨建华, 张步涵, 李俊芳. 华中电力市场MCP与PAB竞价结算模式研究[J]. 水电能源科学, 2009, 27(6): 219-222. |
YANG Jianhua, ZHANG Buhan, LI Junfang. Research on bidding and clearing of PAB and MCP in power market of central China grid[J]. Water Resources & Power, 2009, 27(6): 219-222. |
/
〈 |
|
〉 |