New Type Power System and the Integrated Energy

Optimal Allocation of Electric-Thermal Hybrid Energy Storage for Seaport Integrated Energy System Considering Carbon Trading Mechanism

  • LIN Sen ,
  • WEN Shuli ,
  • ZHU Miao ,
  • DAI Qun ,
  • YAN Lun ,
  • ZHAO Yao ,
  • YE Huili
Expand
  • 1. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
    2. Key Laboratory of Control of Power Transmission and Conversion of the Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
    3. China Shipbuilding Power (Group) Co., Ltd., Shanghai 200129, China
    4. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China

Received date: 2022-10-28

  Revised date: 2022-11-18

  Accepted date: 2022-12-05

  Online published: 2023-03-23

Abstract

With the continuous increase of electrification in seaports, the single energy supply mode of seaport microgrid is evolving towards multi-energy integration. Aimed to achieve the goals of peak carbon and carbon neutrality, an optimal carbon trading mechanism-based allocation scheme of hybrid electric and thermal storage system is proposed to further maximize the economic and environmental benefits. First, the integrated energy system model of a seaport is established, incorporating a scheme within the carbon trading market. Then, a bi-level optimization framework is proposed, in which the upper layer is utilized to optimize the allocation of the hybrid energy storage system and the lower layer is employed to optimize the operation. Afterwards, a combination algorithm of the mesh adaptive direct search and the adaptive chaotic particle swarm optimization is developed to solve the proposed problem. Finally, the real-world data of Tianjing port is utilized to verify the method. The numerical results demonstrate that with the help of the proposed method, both the cost and carbon emissions are dramatically reduced.

Cite this article

LIN Sen , WEN Shuli , ZHU Miao , DAI Qun , YAN Lun , ZHAO Yao , YE Huili . Optimal Allocation of Electric-Thermal Hybrid Energy Storage for Seaport Integrated Energy System Considering Carbon Trading Mechanism[J]. Journal of Shanghai Jiaotong University, 2024 , 58(9) : 1344 -1356 . DOI: 10.16183/j.cnki.jsjtu.2022.428

References

[1] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41 (Sup.1): 28-51.
  HUANG Yuhan, DING Tao, LI Yuting, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41 (Sup.1): 28-51.
[2] International Maritime Organization. Third IMO GHS study 2014[EB/OL]. (2014-01-01)[2022-10-28]. https://www.imo.org/en/OurWork/Environment/Pages/Greenhouse-Gas-Studies-2014.aspx.
[3] FANG S D, WANG Y, GOU B, et al. Toward future green maritime transportation: An overview of seaport microgrids and all-electric ships[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 207-219.
[4] 方斯顿, 赵常宏, 丁肇豪, 等. 面向碳中和的港口综合能源系统(一): 典型系统结构与关键问题[J]. 中国电机工程学报, 2023, 43(1): 114-134.
  FANG Sidun, ZHAO Changhong, DING Zhaohao, et al. Port integrated energy systems toward carbon neutrality (I): Typical topology and key problems[J]. Proceedings of the CSEE, 2023, 43(1): 114-134.
[5] 黄逸文, 黄文焘, 卫卫, 等. 大型海港综合能源系统物流-能量协同优化调度方法[J]. 中国电机工程学报, 2022, 42(17): 6184-6195.
  HUANG Yiwen, HUANG Wentao, WEI Wei, et al. Logistics-energy collaborative optimization scheduling method for large seaport integrated energy system[J]. Proceedings of the CSEE, 2022, 42(17): 6184-6195.
[6] 赵景茜, 米翰宁, 程昊文, 等. 考虑岸电负荷弹性的港区综合能源系统规划模型与方法[J]. 上海交通大学学报, 2021, 55(12): 1577-1585.
  ZHAO Jingqian, MI Hanning, CHEN Haowen, et al. A planning model and method for an integrated energy system considering shore power load flexibility[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1577-1585.
[7] ZHANG Y, LIANG C J, SHI J, et al. Optimal port microgrid scheduling incorporating onshore power supply and berth allocation under uncertainty[J]. Applied Energy, 2022, 313: 118856.
[8] SONG T L, LI Y, ZHANG X P, et al. Integrated Port energy system considering integrated demand response and energy interconnection[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105654.
[9] PU Y, CHEN W, ZHANG R C, et al. Optimal operation strategy of port integrated energy system considering demand response[C]//2020 IEEE 4th Conference on Energy Internet and Energy System Integration. Wuhan, China: IEEE, 2020: 518-523.
[10] WANG X B, HUANG W T, WEI W, et al. Day-ahead optimal economic dispatching of integrated port energy systems considering hydrogen[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 2619-2629.
[11] 任娜, 王雅倩, 徐宗磊, 等. 多能流分布式综合能源系统容量匹配优化与调度研究[J]. 电网技术, 2018, 42(11): 3504-3511.
  REN Na, WANG Yaqian, XU Zonglei, et al. Component sizing and optimal scheduling for distributed multi-energy system[J]. Power System Technology, 2018, 42(11): 3504-3511.
[12] 张晓辉, 刘小琰, 钟嘉庆. 考虑奖惩阶梯型碳交易和电-热转移负荷不确定性的综合能源系统规划[J]. 中国电机工程学报, 2020, 40(19): 6132-6141.
  ZHANG Xiaohui, LIU Xiaoyan, ZHONG Jiaqing. Integrated energy system planning considering a reward and punishment ladder-type carbon trading and electric-thermal transfer load uncertainty[J]. Proceedings of the CSEE, 2020, 40(19): 6132-6141.
[13] 张刚, 张峰, 张利, 等. 考虑碳排放交易的日前调度双阶段鲁棒优化模型[J]. 中国电机工程学报, 2018, 38(18): 5490-5499.
  ZHANG Gang, ZHANG Feng, ZHANG Li, et al. Two-stage robust optimization model of day-ahead scheduling considering carbon emissions trading[J]. Proceedings of the CSEE, 2018, 38(18): 5490-5499.
[14] WANG R T, WEN X Y, WANG X Y, et al. Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading[J]. Applied Energy, 2022, 311: 118664.
[15] 陈曦, 袁梦玲, 王松, 等. 考虑碳交易影响风电消纳的综合能源系统优化运行[J]. 重庆理工大学学报(自然科学), 2022, 36(1): 268-276.
  CHEN Xi, YUAN Mengling, WANG Song, et al. Optimal scheduling of integrated energy system considering impact of carbon trading on wind power consumption[J]. Journal of Chongqing University of Technology(Natural Science), 2022, 36(1): 268-276.
[16] GENNITSARIS S G, KANELLOS F D. Emission-aware and cost-effective distributed demand response system for extensively electrified large ports[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4341-4351.
[17] 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-168.
  XIE Xiaorong, MA Ningjia, LIU Wei, et al. Functions of energy storage in renewable energy dominated power systems: review and Prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-168.
[18] 熊文, 刘育权, 苏万煌, 等. 考虑多能互补的区域综合能源系统多种储能优化配置[J]. 电力自动化设备, 2019, 39(1): 118-126.
  XIONG Wen, LIU Yuquan, SU Wanhuang, et al. Optimal configuration of multi-energy storage in regional integrated energy system considering multi-energy complementation[J]. Electric Power Automation Equipment, 2019, 39(1): 118-126.
[19] 李幸芝, 韩蓓, 李国杰, 等. 分布式绿色能源碳交易机制及碳数据管理的挑战[J]. 上海交通大学学报, 2022, 56(8): 977-993.
  LI Xingzhi, HAN Bei, LI Guojie, et al. Challenges of distributed green energy carbon trading mechanism and carbon data management[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 977-993.
[20] 王泽森, 石岩, 唐艳梅, 等. 考虑LCA能源链与碳交易机制的综合能源系统低碳经济运行及能效分析[J]. 中国电机工程学报, 2019, 39(6): 1614-1626.
  WANG Zesen, SHI Yan, TANG Yanmei, et al. Low-carbon economic operation and energy efficiency analysis of comprehensive energy system considering LCA energy chain and carbon trading mechanism[J]. Proceedings of the CSEE, 2019, 39(6): 1614-1626.
[21] 陈锦鹏, 胡志坚, 陈嘉滨, 等. 考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J]. 高电压技术, 2021, 47(9): 3094-3104.
  CHEN Jinpeng, HU Zhijian, CHEN Jiabin, et al. Optimal dispatch of integrated energy system considering ladder-type carbon trading and flexible double response of supply and demand[J]. High Voltage Engineering, 2021, 47(9): 3094-3104.
[22] 曾贤强, 张警卫, 王晓兰. 计及多重不确定性及光热电站参与的区域综合能源系统配置与运行联合优化[J]. 高电压技术, 2023, 49(1): 353-363.
  ZENG Xianqiang, ZHANG Jingwei, WANG Xiaolan. Optimal configuration of regional integrated energy system taking into account multiple uncertainties and the participation of concentrating solar power stations[J]. High Voltage Engineering, 2023, 49(1): 353-363.
[23] MIRJALILI S, MIRJALILI S M, HATAMLOU A. Multi-Verse Optimizer: A nature-inspired algorithm for global optimization[J]. Neural Computing and Applications, 2016, 27(2): 495-513.
[24] XIAO H, PEI W, DONG Z M, et al. Bi-level planning for integrated energy systems incorporating demand response and energy storage under uncertain environments using novel metamodel[J]. CSEE Journal of Power and Energy Systems, 2018, 4(2): 155-167.
[25] 杨艳红, 裴玮, 齐智平. 基于动态运行策略的混合能源微网规划方法[J]. 电力系统自动化, 2012, 36(19): 30-36.
  YANG Yanhong, PEI Wei, QI Zhiping. Planning method for hybrid energy microgrid based on dynamic operation strategy[J]. Automation of Electric Power Systems, 2012, 36(19): 30-36.
[26] 肖浩, 裴玮, 杨艳红, 等. 计及电池寿命和经济运行的微电网储能容量优化[J]. 高电压技术, 2015, 41(10): 3256-3265.
  XIAO Hao, PEI Wei, YANG Yanhong, et al. Energy storage capacity optimization for microgrid considering battery life and economic operation[J]. High Voltage Engineering, 2015, 41(10): 3256-3265.
Outlines

/