Mechanical Engineering

Numerical Simulation Study on Effect of Fin Array on Impingement Heat Transfer Performance of Airfoil Surface

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-06-23

  Revised date: 2021-07-23

  Online published: 2022-08-11

Abstract

Impinging jet is widely implemented at the leading edge of aircraft wings for anti-/de-icing purposes. To further improve the anti-icing performance, this paper utilized numerical simulation to explore the impingement heat transfer characteristics of different fin arrays on flat plate and concave surface sequentially. The fin array in the flat-plate model consisted of 8, 12 straight fins or 12 curved fins. The concave surface model consisted of 8 short or long fins. The results show that the addition of fin arrays on the flat plate and airfoil surface can significantly improve the jet impact heat transfer performance at different Reynolds numbers. Compared with non-fins, the comprehensive heat transfer effect on the airfoil surface is increased by 4%—10%, especially for the stagnation region. Further flow field analysis reveals that adding fin array not only increases the area of heat transfer, but also strengthens the turbulent kinetic energy of impingement jet flow, leading to an enhancement of heat transfer performance.

Cite this article

ZHANG Tianlun, WANG Kechen, ZHANG Xu, ZHOU Wenwu . Numerical Simulation Study on Effect of Fin Array on Impingement Heat Transfer Performance of Airfoil Surface[J]. Journal of Shanghai Jiaotong University, 2023 , 57(1) : 55 -65 . DOI: 10.16183/j.cnki.jsjtu.2021.222

References

[1] PETTY K R, FLOYD C D J. A statistical review of aviation airframe icing accidents in the US[J]. Conference on Aviation, Range, and Aerospace Meteorology, 2004: 623-628.
[2] JAMBUNATHAN K, LAI E, MOSS M A, et al. A review of heat transfer aata for single circular jet impingement[J]. International Journal of Heat and Fluid Flow, 1992, 13(2): 106-115.
[3] LYTLE D, WEBB B W. Air jet impingement heat transfer at low nozzle-plate spacings[J]. International Journal of Heat and Mass Transfer, 1994, 37(12): 1687-1697.
[4] NARAYANAN V, SEYED-YAGOOBI J, PAGE R H. An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow[J]. International Journal of Heat and Mass Transfer, 2004, 47(8/9): 1827-1845.
[5] LOUREIRO J B R, SILVA FREIRE A P. Velocity and temperature profiles, wall shear stress and heat transfer coefficient of turbulent impinging jets[J]. International Journal of Heat and Mass Transfer, 2017, 107: 846-861.
[6] SIDDIQUE M U, SYED A, KHAN S A, et al. On numerical investigation of heat transfer augmentation of flat target surface under impingement of steady air jet for varying heat flux boundary condition[J]. Journal of Thermal Analysis and Calorimetry, 2021, 147: 4325-4337.
[7] GAU C, LEE I C. Flow and impingement cooling heat transfer along triangular rib-roughened walls[J]. International Journal of Heat and Mass Transfer, 2000, 43(24): 4405-4418.
[8] DOBBERTEAN M M, RAHMAN M M. Numerical analysis of steady state heat transfer for jet impingement on patterned surfaces[J]. Applied Thermal Engineering, 2016, 103: 481-490.
[9] DOBBERTEAN M M. Steady and transient heat transfer for jet impingement on patterned surfaces[D]. Florida, USA: University of South Florida, 2011.
[10] GUO D, WEI J J, ZHANG Y H. Enhanced flow boiling heat transfer with jet impingement on micro-pin-finned surfaces[J]. Applied Thermal Engineering, 2011, 31(11/12): 2042-2051.
[11] HADIPOUR A, ZARGARABADI M R, DEHGHAN M. Effect of micro-pin characteristics on flow and heat transfer by a circular jet impinging to the flat surface[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(7): 943-951.
[12] SONGKRAN W, PAISARN N. Liquid impingement cooling of cold plate heat sink with different fin configurations: High heat flux applications[J]. International Journal of Heat and Mass Transfer, 2019, 140: 281-292.
[13] XING Y, SPRING S, WEIGAND B. Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes[J]. International Journal of Thermal Sciences, 2011, 50(7): 1293-1307.
[14] ZHANG Y S, CHEN W. Experimental study on jet impingement boiling heat transfer in brass beads packed porous layer[J]. Journal of Thermal Science, 2020, 29(3): 208-219.
[15] SINGH A. Numerical investigation on location of protrusions and dimples during slot jet impingement on a concave surface using hybrid ANN-GA[J]. Heat Transfer, 2020, 50(2): 1171-1197.
[16] SINGH A, BALAJI C, PRASAD B. Numerical simulations and optimization of impinging jet configuration[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31(1): 1-25.
[17] GAU C, CHUNG C M. Surface curvature effect on slot air-jet impingement cooling flow and heat transfer process[J]. Journal of Heat Transfer, 1991, 113(4): 858-864.
[18] LYU Y, ZHANG J, LIU X, et al. Experimental study of single-row chevron-jet impingement heat transfer on concave surfaces with different curvatures[J]. Chinese Journal of Aeronautics, 2019, 32(10):2275-2285.
[19] 刘锡晨, 吕元伟, 张靖周. 半圆柱形凹靶面单排射流冲击换热实验研究[J]. 南京航空航天大学学报, 2020, 52(5): 808-816.
[19] LIU Xichen, LV Yuanwei, ZHANG Jingzhou. Experimental investigation of singlerow jet impingement heat transfer on semicylindrical concave surface[J]. Journal of Nanjing University of Aeronautics &Astronautics, 2020, 52(5): 808-816.
[20] HANNAT R, MORENCY F. Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system[J]. Journal of Aircraft, 2014, 51(1): 104-116.
[21] 张靖周, 关涛, 单勇. 笛形管结构参数对热气防冰凹腔表面温度分布的影响[J]. 南京航空航天大学学报, 2017, 49(5): 83-89.
[21] ZHANG Jingzhou, GUAN Tao, SHAN Yong. Influence of piccolo parameters on temperature distribution on hot-air anti-icing concave surface[J]. Journal of Nanjing University of Aeronautics &Astronautics, 2017, 49(5): 83-89.
[22] 郭之强, 郑梅, 董威, 等. 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报, 2017, 38(2): 81-90.
[22] GUO Zhiqiang, ZHENG Mei, DONG Wei, et al. Influence of surface convex on heat transfer enhancement of wing hot air antic-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 81-90.
[23] 归晓烨. 槽道强化换热在飞机机翼热气防冰系统中的应用[J]. 科技视界, 2017(8): 32-32.
[23] GUI Xiaoye. Application of channel enhanced heat exchange in airplane wing hot air anti-icing system[J]. Science &Technology Vision, 2017(8): 32-32.
[24] SEYEDEIN S H, HASAN M, MUJUMDAR A S. Modelling of a single confined turbulent slot jet impingement using various k-ε turbulence models[J]. Applied Mathematical Modelling, 1994, 18(10): 526-537.
[25] WANG S J, MUJUMDAR A S. A comparative study of five low Reynolds number k-ε models for impingement heat transfer[J]. Applied Thermal Engineering, 2005, 25(1): 31-44.
[26] GARIMELLA S V, RICE R A. Confined and submerged liquid jet impingement heat transfer[J]. Journal of Heat Transfer, 1995, 117(4): 421-430.
[27] SAN J Y, HUANG C H, SHU M H. Impingement cooling of a confined circular air jet[J]. International Journal of Heat & Mass Transfer, 1997, 40(6): 1355-1364.
Outlines

/