Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (1): 55-65.doi: 10.16183/j.cnki.jsjtu.2021.222
Special Issue: 《上海交通大学学报》2023年“机械与动力工程”专题
• Mechanical Engineering • Previous Articles Next Articles
ZHANG Tianlun, WANG Kechen, ZHANG Xu, ZHOU Wenwu()
Received:
2021-06-23
Revised:
2021-07-23
Online:
2023-01-28
Published:
2023-01-13
Contact:
ZHOU Wenwu
E-mail:zhouww@sjtu.edu.cn.
CLC Number:
ZHANG Tianlun, WANG Kechen, ZHANG Xu, ZHOU Wenwu. Numerical Simulation Study on Effect of Fin Array on Impingement Heat Transfer Performance of Airfoil Surface[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 55-65.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.222
[1] | PETTY K R, FLOYD C D J. A statistical review of aviation airframe icing accidents in the US[J]. Conference on Aviation, Range, and Aerospace Meteorology, 2004: 623-628. |
[2] |
JAMBUNATHAN K, LAI E, MOSS M A, et al. A review of heat transfer aata for single circular jet impingement[J]. International Journal of Heat and Fluid Flow, 1992, 13(2): 106-115.
doi: 10.1016/0142-727X(92)90017-4 URL |
[3] |
LYTLE D, WEBB B W. Air jet impingement heat transfer at low nozzle-plate spacings[J]. International Journal of Heat and Mass Transfer, 1994, 37(12): 1687-1697.
doi: 10.1016/0017-9310(94)90059-0 URL |
[4] |
NARAYANAN V, SEYED-YAGOOBI J, PAGE R H. An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow[J]. International Journal of Heat and Mass Transfer, 2004, 47(8/9): 1827-1845.
doi: 10.1016/j.ijheatmasstransfer.2003.10.029 URL |
[5] |
LOUREIRO J B R, SILVA FREIRE A P. Velocity and temperature profiles, wall shear stress and heat transfer coefficient of turbulent impinging jets[J]. International Journal of Heat and Mass Transfer, 2017, 107: 846-861.
doi: 10.1016/j.ijheatmasstransfer.2016.10.105 URL |
[6] |
SIDDIQUE M U, SYED A, KHAN S A, et al. On numerical investigation of heat transfer augmentation of flat target surface under impingement of steady air jet for varying heat flux boundary condition[J]. Journal of Thermal Analysis and Calorimetry, 2021, 147: 4325-4337.
doi: 10.1007/s10973-021-10785-4 URL |
[7] |
GAU C, LEE I C. Flow and impingement cooling heat transfer along triangular rib-roughened walls[J]. International Journal of Heat and Mass Transfer, 2000, 43(24): 4405-4418.
doi: 10.1016/S0017-9310(00)00064-8 URL |
[8] |
DOBBERTEAN M M, RAHMAN M M. Numerical analysis of steady state heat transfer for jet impingement on patterned surfaces[J]. Applied Thermal Engineering, 2016, 103: 481-490.
doi: 10.1016/j.applthermaleng.2016.04.070 URL |
[9] | DOBBERTEAN M M. Steady and transient heat transfer for jet impingement on patterned surfaces[D]. Florida, USA: University of South Florida, 2011. |
[10] |
GUO D, WEI J J, ZHANG Y H. Enhanced flow boiling heat transfer with jet impingement on micro-pin-finned surfaces[J]. Applied Thermal Engineering, 2011, 31(11/12): 2042-2051.
doi: 10.1016/j.applthermaleng.2011.03.017 URL |
[11] |
HADIPOUR A, ZARGARABADI M R, DEHGHAN M. Effect of micro-pin characteristics on flow and heat transfer by a circular jet impinging to the flat surface[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(7): 943-951.
doi: 10.1007/s10973-019-09232-2 URL |
[12] |
SONGKRAN W, PAISARN N. Liquid impingement cooling of cold plate heat sink with different fin configurations: High heat flux applications[J]. International Journal of Heat and Mass Transfer, 2019, 140: 281-292.
doi: 10.1016/j.ijheatmasstransfer.2019.06.020 URL |
[13] |
XING Y, SPRING S, WEIGAND B. Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes[J]. International Journal of Thermal Sciences, 2011, 50(7): 1293-1307.
doi: 10.1016/j.ijthermalsci.2010.11.008 URL |
[14] | ZHANG Y S, CHEN W. Experimental study on jet impingement boiling heat transfer in brass beads packed porous layer[J]. Journal of Thermal Science, 2020, 29(3): 208-219. |
[15] |
SINGH A. Numerical investigation on location of protrusions and dimples during slot jet impingement on a concave surface using hybrid ANN-GA[J]. Heat Transfer, 2020, 50(2): 1171-1197.
doi: 10.1002/htj.21922 URL |
[16] |
SINGH A, BALAJI C, PRASAD B. Numerical simulations and optimization of impinging jet configuration[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31(1): 1-25.
doi: 10.1108/HFF-01-2020-0053 URL |
[17] |
GAU C, CHUNG C M. Surface curvature effect on slot air-jet impingement cooling flow and heat transfer process[J]. Journal of Heat Transfer, 1991, 113(4): 858-864.
doi: 10.1115/1.2911214 URL |
[18] |
LYU Y, ZHANG J, LIU X, et al. Experimental study of single-row chevron-jet impingement heat transfer on concave surfaces with different curvatures[J]. Chinese Journal of Aeronautics, 2019, 32(10):2275-2285.
doi: 10.1016/j.cja.2019.07.002 URL |
[19] | 刘锡晨, 吕元伟, 张靖周. 半圆柱形凹靶面单排射流冲击换热实验研究[J]. 南京航空航天大学学报, 2020, 52(5): 808-816. |
LIU Xichen, LV Yuanwei, ZHANG Jingzhou. Experimental investigation of singlerow jet impingement heat transfer on semicylindrical concave surface[J]. Journal of Nanjing University of Aeronautics &Astronautics, 2020, 52(5): 808-816. | |
[20] |
HANNAT R, MORENCY F. Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system[J]. Journal of Aircraft, 2014, 51(1): 104-116.
doi: 10.2514/1.C032078 URL |
[21] | 张靖周, 关涛, 单勇. 笛形管结构参数对热气防冰凹腔表面温度分布的影响[J]. 南京航空航天大学学报, 2017, 49(5): 83-89. |
ZHANG Jingzhou, GUAN Tao, SHAN Yong. Influence of piccolo parameters on temperature distribution on hot-air anti-icing concave surface[J]. Journal of Nanjing University of Aeronautics &Astronautics, 2017, 49(5): 83-89. | |
[22] | 郭之强, 郑梅, 董威, 等. 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报, 2017, 38(2): 81-90. |
GUO Zhiqiang, ZHENG Mei, DONG Wei, et al. Influence of surface convex on heat transfer enhancement of wing hot air antic-icing system[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 81-90. | |
[23] | 归晓烨. 槽道强化换热在飞机机翼热气防冰系统中的应用[J]. 科技视界, 2017(8): 32-32. |
GUI Xiaoye. Application of channel enhanced heat exchange in airplane wing hot air anti-icing system[J]. Science &Technology Vision, 2017(8): 32-32. | |
[24] |
SEYEDEIN S H, HASAN M, MUJUMDAR A S. Modelling of a single confined turbulent slot jet impingement using various k-ε turbulence models[J]. Applied Mathematical Modelling, 1994, 18(10): 526-537.
doi: 10.1016/0307-904X(94)90138-4 URL |
[25] |
WANG S J, MUJUMDAR A S. A comparative study of five low Reynolds number k-ε models for impingement heat transfer[J]. Applied Thermal Engineering, 2005, 25(1): 31-44.
doi: 10.1016/j.applthermaleng.2004.06.001 URL |
[26] | GARIMELLA S V, RICE R A. Confined and submerged liquid jet impingement heat transfer[J]. Journal of Heat Transfer, 1995, 117(4): 421-430. |
[27] | SAN J Y, HUANG C H, SHU M H. Impingement cooling of a confined circular air jet[J]. International Journal of Heat & Mass Transfer, 1997, 40(6): 1355-1364. |
[1] | RAO Yu,LI Lin. Experimental Study of Flow and Heat Transfer in Cooling Channels with Pin Fin Arrays and Detached Pin Fin Arrays [J]. Journal of Shanghai Jiaotong University, 2014, 48(06): 782-787. |
[2] |
DONG Lining,QUAN Xiaojun,CHENG Ping . Numerical Simulation for Friction Factor of Laminar Flow of Water in Microchannels with MicroPinFin Arrays [J]. Journal of Shanghai Jiaotong University, 2010, 44(11): 1561-1565. |
[3] |
SONG Bin,LIAO Liang,LIU Zhenhua . Flow Drag and Heat Transfer Performances of Dragreducing Fluid with Carbon Nanotubes Added [J]. Journal of Shanghai Jiaotong University, 2010, 44(10): 1332-1336. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||