Transportation Engineering

Development and Application of a Model Test Platform of Synchronous Technology Combining Shield Tunneling with Segment Assembling

Expand
  • Shanghai Tunnel Engineering Co., Ltd., Shanghai 200232, China

Received date: 2021-07-06

  Online published: 2022-08-16

Abstract

Taking a running tunnel of Shanghai Railway Airport connecting line as a demonstration application project, the synchronous technology combining shield tunneling with segment assembling is proposed based on the active control on the oil pressure of the shield thrust system, which can solve the problem of the long construction period produced by a single shield machine employed in a long-distance shield tunnel project. The principle is to make full use of the extra stroke of propulsion cylinders generated by the axial insertion of the key block to assemble segments, and the theoretical operation time of a single ring can be reduced by 31.6%. Then, a large model test platform for this synchronization technology is established to verify its feasibility and reliability, and the redistribution method of the missing thrust force is introduced during the synchronous process, which is verified by the model test. The test results show that the actuators of the shield machine respond quickly, and the errors of the cylinder pressures and total thrust force of the propulsion system are controlled within ±2%. The attitude deviation of the shield machine is controlled within ±6 mm, and the error range of the driving speed is -2 to 4 mm/min. The segments are safe with the designed overburden thickness of 33 m, and the compressive safety coefficient reaches 1.68.

Cite this article

ZHU Yeting, MIN Rui, QIN Yuan, WU Wenfei, YUAN Peng, ZHAI Yixin, ZHU Yanfei . Development and Application of a Model Test Platform of Synchronous Technology Combining Shield Tunneling with Segment Assembling[J]. Journal of Shanghai Jiaotong University, 2022 , 56(7) : 897 -907 . DOI: 10.16183/j.cnki.jsjtu.2021.241

References

[1] 张康, 黄亦翔, 赵帅, 等. 基于t-SNE数据驱动模型的盾构装备刀盘健康评估[J]. 机械工程学报, 2019, 55(7): 19-26.
[1] ZHANG Kang, HUANG Yixiang, ZHAO Shuai, et al. Health assessment of shield equipment cutterhead based on t-SNE data-driven model[J]. Journal of Mechanical Engineering, 2019, 55(7): 19-26.
[2] LIU Q S, LIU J P, PAN Y C, et al. A wear rule and cutter life prediction model of a 20-in. TBM cutter for granite: A case study of a water conveyance tunnel in China[J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1303-1320.
[3] 王吉云. 近十年来中国超大直径盾构施工经验[J]. 隧道建设, 2017, 37(3): 330-335.
[3] WANG Jiyun. Super-large diameter shield tunneling technologies in China in recent decade[J]. Tunnel Construction, 2017, 37(3): 330-335.
[4] 洪开荣. 我国隧道及地下工程近两年的发展与展望[J]. 隧道建设, 2017, 37(2): 123-134.
[4] HONG Kairong. Development and prospects of tunnels and underground works in China in recent two years[J]. Tunnel Construction, 2017, 37(2): 123-134.
[5] LIU T J, HUANG H H, YAN Z R, et al. A case study on key techniques for long-distance sea-crossing shield tunneling[J]. Marine Georesources & Geotechnology, 2020, 38(7): 786-803.
[6] XU C J, LIU Y K, CAO Z G. Numerical analysis and comparison of soil freezing schemes for replacement of shield tail brush in long-distance tunnel engineering[J]. European Journal of Environmental and Civil Engineering, 2018, 22(Sup. 1): 316-332.
[7] 张昭. 郑州地铁砂性地层盾构长距离掘进技术研究[J]. 隧道建设, 2017, 37(7): 851-856.
[7] ZHANG Zhao. Technology for long-distance boring of shield in sandy strata: A case study of Zhengzhou metro[J]. Tunnel Construction, 2017, 37(7): 851-856.
[8] 王卫东, 丁文其, 杨秀仁, 等. 基坑工程与地下工程: 高效节能、环境低影响及可持续发展新技术[J]. 土木工程学报, 2020, 53(7): 78-98.
[8] WANG Weidong, DING Wenqi, YANG Xiuren, et al. Deep excavation engineering and underground engineering—New techniques of high-efficiency and energy-saving, low environmental impact, and sustainable development[J]. China Civil Engineering Journal, 2020, 53(7): 78-98.
[9] 周双禧, 李志华, 陈非龙, 等. 城市轨道交通盾构法隧道施工新技术及应用[J]. 施工技术, 2020, 49(19): 87-92.
[9] ZHOU Shuangxi, LI Zhihua, CHEN Feilong, et al. New technology and application of shield tunnelling method in urban rail transit tunnels excavation[J]. Construction Technology, 2020, 49(19): 87-92.
[10] ZHANG Y Q, ZHANG J M, GUO H L, et al. A risk assessment method for metro shield tunnel construction based on interval number[J]. Geotechnical and Geological Engineering, 2020, 38(5): 4793-4809.
[11] 林裕悟, 鹿島竜之介, 島厚夫. F-NAVIシールド工法による高速施工の事例紹介--掘削·セグメント組立同時施工での施工実績 (特集 シールド機械と施工)[J]. Construction Machinery and Equipment, 2008, 44(8): 20-26.
[11] HAYASHI Yugo, RYUNOSUKE Kajima, TOSHIO Shima. Case introduction of F-NAVI high-speed shield construction method: Construction examples of synchronous operation combining the shield tunnelling and segment assembling[J]. Construction Machinery and Equipment, 2008, 44(8): 20-26.
[12] 齋藤進, 室木紀彦, 山本邦男. ラチス式同時施工シールド工法による長距離施工--大阪府寝屋川流域恩智川東幹線下水道工事[J]. Tunnels and Underground, 1999, 30: 717-724.
[12] SUZUMI Saito, NORIHIKO Muroki, KUNIO Yamamoto. Long distance shield tunnel construction by lattice tunneling method: Project of Eizugawa River main line in Neyagawa River, Osaka Prefecture[J]. Tunnels and Underground, 1999, 30: 717-724.
[13] 須田悦弘. ダブルジャッキ式同時掘進工法の開発 (その3)-東西連係ガス導管新設工事 (富津工区) への適用-[J]. 土木学会第60回年次講演会, 2005, 9: 193-194.
[13] HIROSHI Suda. Development of double hydro-cylinder type shield method—Part 3: Application to gas conduit project connecting East and West (Futsu works)[J]. The 60th Annual Lecture of Civil Engineering Society, 2005, 9: 193-194.
[14] 奥村組. 新技術活用シリーズ 「国土技術開発賞」最優秀賞受賞 ハニカムセグメントを用いた同時施工法[J]. 建設オピニオン, 2006, 13: 1-4.
[14] OKUMURA Kumi. “New technology flexible use system” won the best award, using the synchronous construction method of honeycomb segments[J]. Construction Insights, 2006, 13: 1-4.
[15] 西明良. ロスゼロ工法-シールド部分同時施工法[J]. 土地改良, 2007, 45: 1-3.
[15] FUKUAKYOSI. LoseZero method:Partial synchronization shield construction method[J]. Land Improvement, 2007, 45: 1-3.
Outlines

/