Tactile Force Sensor of Underwater Dexterous Hand Based on Micro Electromechanical System

Expand
  • 1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; 2. The 705 Research Institute, China Shipbuilding Industry Corporation, Xi’an 710077, China

Online published: 2018-01-01

Abstract

In order to achieve the position determination and force tactile perception in underwater dexterous hand grasping target under deep water environment, an array of tactile force measurement sensor is designed. The silicon cup is used as the force sensitive core, the tactile force measurement of the static pressure vector superposition of water is realized by the capsule differential pressure structure, and the influence of the static pressure of water on the tactile force measurement is eliminated. The analytical solution for the deformation and stress of silicon cup square bottom is analyzed by the elastic mechanics and shell theory. The results show that the tactile force sensor of underwater dexterous hand achieves the tactile perception and position determination of the target gripping. The capsule differential pressure structure makes the tactile force sensor eliminate the effect of the static pressure. The silicon cup measurement structure has the advantages of high sensitivity, small error, and high output characteristics of stress.

Cite this article

ZHANG Jianjun1,LIU Weidong1,ZHANG Yiwen2,TANG Weijiang1,2 . Tactile Force Sensor of Underwater Dexterous Hand Based on Micro Electromechanical System[J]. Journal of Shanghai Jiaotong University, 2018 , 52(1) : 76 -82 . DOI: 10.16183/j.cnki.jsjtu.2018.01.012

References

[1]MUSCOLO G G, CANNATA G. A novel tactile sensor for underwater applications: Limits and perspectives[EB/OL].[2016-07-01]. http:∥ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7271717. [2]PALLI G, MORIELLO L, MELCHIORRI C. On the bandwidth of 6-axis force/torque sensors for underwater applications[EB/OL].[2016-07-01]. http:∥ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7271380. [3]LIU A Q, ZHAO J W, LI L, et al. Micro-force measuring apparatus for robotic fish: Design, implementation and application[EB/OL].[2016-07-01]. http:∥ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7162808. [4]BEMFICA J R, MELCHIORRI C, MORIELLO L, et al. A three-fingered cable-driven gripper for underwater applications[C]∥International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014: 2469-2474. [5]PALLI G, MORIELLO L, SCARCIA U, et al. An intrinsic tactile sensor for underwater robotics[C]∥Proceedings of the 19th World Congress. South Africa: IFAC, 2014, 3364-3369. [6]XU D Z, YANG M, ZHANG Q, et al. Mechanical structure of intelligent underwater dexterous hand[C]∥International Conference on Information and Automation (ICIA). Harbin, China: IEEE, 2011: 782-785. [7]刘焕进, 刘正士, 王勇, 等. 波纹管用于水下仪器设备压力平衡的力学性能分析[J]. 中国机械工程, 2012, 23(6) : 712-716. LIU Huanjin, LIU Zhengshi, WANG Yong, et al. Analysis of mechanical property of corrugated bellow used for pressure balance for underwater equipment[J]. China Mechanical Engineering, 2012, 23(6): 712-716. [8]黄豪彩, 杨灿军, 杨群慧, 等. 基于压力自适应平衡的深海气密采水系统[J]. 机械工程学报, 2010, 46(12): 148-154. HUANG Haocai, YANG Canjun, YANG Qunhui, et al. Study of gas-tight deep-sea water sampling system based on pressure self-adaptive equalization[J]. Journal of Mechanical Engineering, 2010, 46(12): 148-154. [9]孟庆鑫, 王华, 王立权, 等. 一种水下灵巧手指端力传感器的研究[J]. 中国机械工程, 2006, 17(11): 1132-1135. MENG Qingxin, WANG Hua, WANG Liquan, et al. Development of fingertip force sensor for a dexterous underwater hand[J]. China Mechanical Engineering, 2006, 17(11): 1132-1135. [10]赵长福. 一种用于水下机器人的接触觉传感器[J]. 信息与控制, 1985, 14(2): 44-47. [11]王勇, 刘正士, 陈恩伟, 等. 软囊式水下力传感器的力学特性与设计原则[J]. 机械工程学报, 2009, 45(10): 15-21. WANG Yong, LIU Zhengshi, CHEN Enwei, et al. Mechanical characteristic and design principle of underwater force sensor based on pressure balance of bladder[J]. Journal of Mechanical Engineering, 2009, 45(10): 15-21. [12]TIMOSHENKO S P, WOINOWSKY-KRIEGER S. Theory of plates and shells[M]. New York, USA: McGraw-hill, 1959. [13]胡国清, 龚小山, 周永宏, 等. 硅压力传感器基座受力变形时的输出性能[J]. 华南理工大学学报(自然科学版), 2015, 43(3): 1-8. HU Guoqing, GONG Xiaoshan, ZHOU Yonghong, et al. Output performance of silicon pressure sensor influenced by deformation of sensor substrate[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(3): 1-8. [14]LOU L, ZHANG S S, PARK W T, et al. Optimization of NEMS pressure sensors with a multilayered diaphragm using silicon nanowires as piezoresistive sensing elements[J]. Journal of Micromechanics & Microengineering, 2012, 22(5): 1-15. [15]KUMAR S S, PANT B D. Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: A focused review[J]. Microsystem Technologies, 2014, 20(7): 1213-1247. [16]赵立波, 赵玉龙, 李建波, 等. 倒杯式耐高温高频响压阻式压力传感器[J]. 西安交通大学学报, 2010, 44(7): 50-54. ZHAO Libo, ZHAO Yulong, LI Jianbo, et al. Inverted-cup high-temperature and high-frequency piezoresistive pressure sensor[J]. Journal of Xi’an Jiaotong University, 2010, 44(7): 50-54. [17]CHEONG J H, NG S S Y, LIU X, et al. An inductively powered implantable blood flow sensor microsystem for vascular grafts[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2466-2475.
Options
Outlines

/