[1] |
陈晓, 李亚安, 李余兴, 等. 基于距离加权的概率数据关联机动目标跟踪算法[J]. 上海交通大学学报, 2018, 52(4): 474-479.
doi: 10.16183/j.cnki.jsjtu.2018.04.013
|
|
CHEN Xiao, LI Ya’an, LI Yuxing, et al. Maneuvering target tracking algorithm based on weighted distance of probability data association[J]. Journal of Shanghai Jiao Tong University, 2018, 52(4): 474-479.
|
[2] |
LI X R, ZHANG Y. Multiple-model estimation with variable structure. V. Likely-model set algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 448-466.
doi: 10.1109/7.845222
URL
|
[3] |
LI X R, ZHI X, ZHANG Y. Multiple-model estimation with variable structure. III. Model-group switching algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 225-241.
doi: 10.1109/7.745694
URL
|
[4] |
LI X R, JILKOV V P, RU J. Multiple-model estimation with variable structure—Part VI: Expected-mode augmentation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 853-867.
doi: 10.1109/TAES.2005.1541435
URL
|
[5] |
JILKOV V P, ANGELOVA D S, SEMERDJIEV T Z A. Design and comparison of mode-set adaptive IMM algorithms for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 343-350.
doi: 10.1109/7.745704
URL
|
[6] |
王昱淇, 卢宙, 蔡云泽. 基于一致性的分布式变结构多模型方法[J]. 自动化学报, 2021, 47(7): 1548-1557.
|
|
WANG Yuqi, LU Zhou, CAI Yunze. Consensus-based distributed variable structure multiple model[J]. Acta Automatica Sinica, 2021, 47(7): 1548-1557.
|
[7] |
郭志, 董春云, 蔡远利, 等. 时变转移概率IMM-SRCKF机动目标跟踪算法[J]. 系统工程与电子技术, 2015, 37(1): 24-30.
|
|
GUO Zhi, DONG Chunyun, CAI Yuanli, et al. Time-varying transition probability based IMM-SRCKF algorithm for maneuvering target tracking[J]. Systems Engineering and Electronics, 2015, 37(1): 24-30.
doi: 10.3969/j.issn.1001-506X.2015.01.05
|
[8] |
游航航, 韩其松, 余敏建, 等. 基于AIGWO-IMMUKF 的目标跟踪算法[J]. 北京航空航天大学学报, 2020, 46(10): 1826-1833.
|
|
YOU Hanghang, HAN Qisong, YU Minjian, et al. Target tracking algorithm based on AIGWO-IMMUKF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1826-1833.
|
[9] |
XIE G, SUN L, WEN T, et al. Adaptive transition probability matrix-based parallel IMM algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(5): 2980-2989.
doi: 10.1109/TSMC.2019.2922305
URL
|
[10] |
潘媚媚. 高速高机动目标自适应跟踪算法研究[D]. 西安: 西安电子科技大学, 2019.
|
|
PAN Meimei. Research on adaptive algorithms for highly maneuvering target tracking[D]. Xi’an: Xi-dian University, 2019.
|
[11] |
EUN Y, JEON D. Fuzzy inference-based dynamic determination of IMM mode transition probability for multi-radar tracking[C]// Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013: 1520-1525.
|
[12] |
LI L Q, ZHAO D, LUO C D. A novel interacting TS fuzzy multiple model by using UKF for maneuvering target tracking[C]// 2019 22th International Conference on Information Fusion. Ottawa, Canada: IEEE, 2019: 1-7.
|
[13] |
邵堃, 雷迎科. 基于模糊逻辑和机动检测的AGIMM跟踪算法[J]. 空军工程大学学报(自然科学版), 2020, 21(4): 80-87.
|
|
SHAO Kun, LEI Yingke. AGIMM tracking algorithm based on fuzzy logic and maneuvering detection[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(4): 80-87.
|
[14] |
CHANG C W, TAO C W. A novel approach to implement Takagi-Sugeno fuzzy models[J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2353-2361.
doi: 10.1109/TCYB.2017.2701900
URL
|
[15] |
雷英杰, 路艳丽, 王毅, 等. 模糊逻辑与智能系统[M]. 西安: 西安电子科技大学出版社, 2016.
|
|
LEI Yingjie, LU Yanli, WANG Yi, et al. Fuzzy logic with intelligent systems[M]. Xi’an: Xidian University Press, 2016.
|
[16] |
罗晓勇. 无线传感网络中基于交互式多模型目标跟踪算法研究[D]. 重庆: 重庆邮电大学, 2020.
|
|
LUO Xiaoyong. Research on target tracking algorithm based on interaction multiple model in wireless sensor networks[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2020.
|
[17] |
傅虹景, 于守江, 吉峰, 等. 基于“当前”统计模型的变结构交互多模型算法[J]. 无线电工程, 2020, 50(4): 318-322.
|
|
FU Hongjing, YU Shoujiang, JI Feng, et al. Variable structure interactive multiple model algorithm based on current statistical model[J]. Radio Engineering, 2020, 50(4): 318-322.
|