Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (7): 1050-1058.doi: 10.16183/j.cnki.jsjtu.2023.456
• Materials Science and Engineering • Previous Articles
HE Xiyu, YANG Fan(
), ZHANG Junliang
Received:2023-09-11
Revised:2023-10-27
Accepted:2023-11-17
Online:2025-07-28
Published:2025-07-22
Contact:
YANG Fan
E-mail:fanyang_0123@sjtu.edu.cn
CLC Number:
HE Xiyu, YANG Fan, ZHANG Junliang. First-Principle Investigation of Reaction Pathways for Nitrate Reduction on (101) Surface of Anatase TiO2[J]. Journal of Shanghai Jiao Tong University, 2025, 59(7): 1050-1058.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.456
| [1] | CHEN J G, CROOKS R M, SEEFELDT L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): eaar6611. |
| [2] | FU X B, ZHANG J H, KANG Y J. Recent advances and challenges of electrochemical ammonia synthesis[J]. Chem Catalysis, 2022, 2(10): 2590-2613. |
| [3] | WANG Y T, YU Y F, JIA R R, et al. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization[J]. National Science Review, 2019, 6(4): 730-738. |
| [4] | CHEN W D, YANG X Y, CHEN Z D, et al. Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion[J]. Advanced Functional Materials, 2023, 33(29): 2300512. |
| [5] | GARCIA-SEGURA S, LANZARINI-LOPES M, HRISTOVSKI K, et al. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications[J]. Applied Catalysis B: Environmental, 2018, 236: 546-568. |
| [6] | HUANG H, ZHAO M, XING X, et al. In-situ infrared studies of the Cd-UPD mediated reduction of nitrate on gold[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1990, 293(1/2): 279-284. |
| [7] | CHEN J, HE X, ZHAO D L, et al. Greatly enhanced electrochemical nitrate-to-ammonia conversion over an Fe-doped TiO2 nanoribbon array[J]. Green Chemistry, 2022, 24(20): 7913-7917. |
| [8] | WEI Z, NIU X W, YIN H B, et al. Synergistic effect of oxygen defects and hetero-phase junctions of TiO2 for selective nitrate electroreduction to ammonia[J]. Applied Catalysis A: General, 2022, 636: 118596. |
| [9] | JIA R R, WANG Y T, WANG C H, et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2[J]. ACS Catalysis, 2020, 10(6): 3533-3540. |
| [10] | WANG C, GE X, FAN H Q, et al. Simultaneous tuning of particle size and phase composition of TiO2-δ nanoparticles by a simple liquid immiscibility strategy[J]. Journal of Materials Science & Technology, 2023, 145: 1-6. |
| [11] | ZHANG X, WANG C H, GUO Y M, et al. Cu clusters/TiO2-x with abundant oxygen vacancies for enhanced electrocatalytic nitrate reduction to ammonia[J]. Journal of Materials Chemistry A, 2022, 10(12): 6448-6453. |
| [12] | ZHAO D L, MA C Q, LI J, et al. Direct eight-electron NO3--to-NH3 conversion: Using a Co-doped TiO2 nanoribbon array as a high-efficiency electrocatalyst[J]. Inorganic Chemistry Frontiers, 2022, 9(24): 6412-6417. |
| [13] |
TAO H B, FANG L W, CHEN J Z, et al. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction[J]. Journal of the American Chemical Society, 2016, 138(31): 9978-9985.
doi: 10.1021/jacs.6b05398 pmid: 27441842 |
| [14] | ZHANG J B, YIN R G, SHAO Q, et al. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction[J]. Angewandte Chemie International Edition, 2019, 58(17): 5609-5613. |
| [15] | ZENG W, LIU T M, LI T M, et al. First principles study of oxygen adsorption on the anatase TiO2 (101) surface[J]. Physica E: Low-Dimensional Systems & Nanostructures, 2015, 67: 59-64. |
| [16] | KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
| [17] | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
| [18] |
BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
doi: 10.1103/physrevb.50.17953 pmid: 9976227 |
| [19] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328 |
| [20] | MATHEW K, SUNDARARAMAN R, LETCHWORTH-WEAVER K, et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. The Journal of Chemical Physics, 2014, 140(8): 084106. |
| [21] | CHASE M W. NIST-JANAF thermochemical tables 2 volume-set, journal of physical and chemical reference data mono-graphs[EB/OL]. (1998-08-01)[2023-07-01]. https://www.nist.gov/publications/nist-janaf-thermochemical-tables-4th-edition. |
| [22] | NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892. |
| [23] | WEIRICH T E, WINTERER M, SEIFRIED S, et al. Structure of nanocrystalline anatase solved and refined from electron powder data[J]. Acta Crystallographica Section A Foundations of Crystallography, 2002, 58(4): 308-315. |
| [24] | LIN J S, CHOU W C, LU S Y, et al. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO2 anatase (101) surface[J]. The Journal of Physical Chemistry B, 2006, 110(46): 23460-23466. |
| [25] | LIU Q, ZHAN F Q, LUO H, et al. Mechanism of interface engineering for ultrahigh piezo-photoelectric catalytic coupling effect of BaTiO3@TiO2 microflowers[J]. Applied Catalysis B: Environmental, 2022, 318: 121817. |
| [26] | HU T, WANG C H, WANG M T, et al. Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts[J]. ACS Catalysis, 2021, 11(23): 14417-14427. |
| [1] | Yuefeng Zhang, Tianyi Wang, Liang Mei, Ruijie Yang, Weiwei Guo, Hao Li, Zhiyuan Zeng. Rational Design of Cost-Effective Metal-Doped ZrO2 for Oxygen Evolution Reaction [J]. Nano-Micro Letters, 2024, 16(1): 180-. |
| [2] | Yizhe Li, Yajie Li, Hao Sun, Liyao Gao, Xiangrong Jin, Yaping Li, Zhi LV, Lijun Xu, Wen Liu, Xiaoming Sun. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization [J]. Nano-Micro Letters, 2024, 16(1): 139-. |
| [3] | Wei Guo, Linhui Yu, Ling Tang, Yan Wan, Yangming Lin. Recent Advances in Mechanistic Understanding of Metal-Free Carbon Thermocatalysis and Electrocatalysis with Model Molecules [J]. Nano-Micro Letters, 2024, 16(1): 125-. |
| [4] | Yu Du, Weijie Chen, Yu Wang, Yue Yu, Kai Guo, Gan Qu, Jianan Zhang. Quantum Spin Exchange Interactions to Accelerate the Redox Kinetics in Li-S Batteries [J]. Nano-Micro Letters, 2024, 16(1): 100-. |
| [5] | HU Huanming, YANG Fan, ZHANG Junliang. Effect of Preparation Process of La0.95FeO3-δ/C Composite Electrode on Preparation and Bifunctional Electrocatalytic Properties [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1049-1057. |
| [6] | SUN Xiaowen,YANG Peng,ZHANG Wenguang. Synthesis of Sulfosalicylic Acid Doped Polyaniline/MultiWalled Carbon Nanotubes Composite Film Modified Electrode and Its Applications [J]. Journal of Shanghai Jiaotong University, 2016, 50(02): 228-234. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||