[1] |
GAREY M R, JOHNSON D S, SETHI R. The complexity of flowshop and jobshop scheduling[J]. Mathematics of Operations Research, 1976, 1(2): 117-129.
|
[2] |
CHUNG C S, FLYNN J, KIRCA Ö. A branch and bound algorithm to minimize the total tardiness for m-machine permutation flowshop problems[J]. European Journal of Operational Research, 2006, 174(1): 1-10.
|
[3] |
GMYS J, MEZMAZ M, MELAB N, et al. A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem[J]. European Journal of Operational Research, 2020, 284(3): 814-833.
|
[4] |
RAD S F. A new ant algorithmic approach for solving PFSP[J]. Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46(1): 181-188.
|
[5] |
黎阳, 李新宇, 牟健慧. 基于改进模拟退火算法的大规模置换流水车间调度[J]. 计算机集成制造系统, 2020, 26(2): 366-375.
|
|
LI Yang, LI Xinyu, MOU Jianhui. Large-scale permutation flowshop scheduling method based on improved simulated annealing algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 26(2): 366-375.
|
[6] |
赵芮, 顾幸生. 求解零空闲流水车间调度问题的离散正弦优化算法[J]. 上海交通大学学报, 2020, 54(12): 1291-1299.
doi: 10.16183/j.cnki.jsjtu.2019.321
|
|
ZHAO Rui, GU Xingsheng. A discrete sine optimization algorithm for No-idle flow-shop scheduling problem[J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1291-1299.
|
[7] |
高丽, 周炳海, 杨学良, 等. 基于多规则资源分配的柔性作业车间调度问题多目标集成优化方法[J]. 上海交通大学学报, 2015, 49(8): 1191-1198.
|
|
GAO Li, ZHOU Binghai, YANG Xueliang, et al. A multi-objective integrated optimization method for FJSP based on multi-rule resource allocation[J]. Journal of Shanghai Jiao Tong University, 2015, 49(8): 1191-1198.
|
[8] |
汤洪涛, 王丹南, 邵益平, 等. 基于改进候鸟迁徙优化的多目标批量流混合流水车间调度[J]. 上海交通大学学报, 2022, 56(2): 201-213.
doi: 10.16183/j.cnki.jsjtu.2020.435
|
|
TANG Hongtao, WANG Dannan, SHAO Yiping, et al. A modified migrating birds optimization for multi-objective lot streaming hybrid flowshop scheduling[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 201-213.
|
[9] |
CHEN T L, CHENG C Y, CHOU Y H. Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming[J]. Annals of Operations Research, 2020, 290(1): 813-836.
|
[10] |
PAN Y X, GAO K Z, LI Z W, et al. Improved meta-heuristics for solving distributed lot-streaming permutation flow shop scheduling problems[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(1): 361-371.
|
[11] |
SANG H Y, PAN Q K, DUAN P Y, et al. An effective discrete invasive weed optimization algorithm for lot-streaming flowshop scheduling problems[J]. Journal of Intelligent Manufacturing, 2018, 29(6): 1337-1349.
|
[12] |
TSENG C T, LIAO C J. A discrete particle swarm optimization for lot-streaming flowshop scheduling problem[J]. European Journal of Operational Research, 2008, 191(2): 360-373.
|
[13] |
ALFIERI A, GLASS C, VAN DE VELDE S. Two-machine lot streaming with attached setup times[J]. IIE Transactions, 2012, 44(8): 695-710.
|
[14] |
VILLARINHO P A, PANADERO J, PESSOA L S, et al. A simheuristic algorithm for the stochastic permutation flowshop problem with delivery dates and cumulative payoffs[J]. International Transactions in Operational Research, 2021, 28(2): 716-737.
|
[15] |
LIU R, FAN X Y, WU Z R, et al. The physician scheduling of fever clinic in the COVID-19 pandemic[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(2): 709-723.
|
[16] |
BELZUNCE F, MARTÍNEZ-RIQUELME C, MULERO J. An introduction to stochastic orders[M]. New York, American: Academic Press, 2015.
|
[17] |
NAWAZ M, ENSCORE E E, HAM I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[J]. Omega, 1983, 11(1): 91-95.
|
[18] |
RUIZ R, STÜTZLE T. An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives[J]. European Journal of Operational Research, 2008, 187(3): 1143-1159.
|