Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (5): 682-692.doi: 10.16183/j.cnki.jsjtu.2022.358
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
ZHOU Yi1, ZHOU Liangcai1(), SHI Di2, ZHAO Xiaoying2, SHAN Xin3
Received:
2022-09-13
Revised:
2023-02-15
Accepted:
2023-02-24
Online:
2024-05-28
Published:
2024-06-17
CLC Number:
ZHOU Yi, ZHOU Liangcai, SHI Di, ZHAO Xiaoying, SHAN Xin. Coordinated Active Power-Frequency Control Based on Safe Deep Reinforcement Learning[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 682-692.
[1] | 周毅, 钱学东. 华东电网动态区域控制误差应用分析[J]. 电力系统自动化, 2010, 34(8): 106-110. |
ZHOU Yi, QIAN Xuedong. Applications analysis of dynamic ACE in East China power grid[J]. Automation of Electric Power Systems, 2010, 34(8): 106-110. | |
[2] | 李兆伟, 吴雪莲, 庄侃沁, 等. “9·19”锦苏直流双极闭锁事故华东电网频率特性分析及思考[J]. 电力系统自动化, 2017, 41(7): 149-155. |
LI Zhaowei, WU Xuelian, ZHUANG Kanqin, et al. Analysis and reflection on frequency characteristics of East China grid after bipolar locking of “9·19” Jinping-Sunan DC transmission line[J]. Automation of Electric Power Systems, 2017, 41(7): 149-155. | |
[3] | 颜伟, 王聪, 毛艳丽, 等. 基于OPF的互联电网AGC优化模型[J]. 电力系统保护与控制, 2015, 43(23): 35-40. |
YAN Wei, WANG Cong, MAO Yanli, et al. AGC optimal model based on OPF technology for interconnected power grid[J]. Power System Protection & Control, 2015, 43(23): 35-40. | |
[4] | 刘阳, 夏添, 汪旸. 区域电网内多输电断面有功协同控制策略在线生成方法[J]. 电力自动化设备, 2020, 40(7): 204-210. |
LIU Yang, XIA Tian, WANG Yang. On-line generation method of active power coordinated control strategy for multiple transmission sections in regional power grid[J]. Electric Power Automation Equipment, 2020, 40(7): 204-210. | |
[5] | 贾宏杰, 穆云飞, 余晓丹. 基于直流潮流灵敏度的断面潮流定向控制[J]. 电力系统自动化, 2010, 34(2): 34-38. |
JIA Hongjie, MU Yunfei, YU Xiaodan. Directional control method to interface power based on DC power flow and sensitivity[J]. Automation of Electric Power Systems, 2010, 34(2): 34-38. | |
[6] | 赵建宁, 徐武祥, 杨强. 基于AGC的稳定断面潮流控制的设计与实现[J]. 电力系统自动化, 2006, 30(22): 85-88. |
ZHAO Jianning, XU Wuxiang, YANG Qiang. Design and implementation of active power control for tie lines based on automatic generation control[J]. Automation of Electric Power Systems, 2006, 30(22): 85-88. | |
[7] | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354-359. |
[8] | SILVER D, SINGH S, PRECUP D, et al. Reward is enough[J]. Artificial Intelligence, 2021, 299: 103535. |
[9] | 刘威, 张东霞, 王新迎, 等. 基于深度强化学习的电网紧急控制策略研究[J]. 中国电机工程学报, 2018, 38(1): 109-119. |
LIU Wei, ZHANG Dongxia, WANG Xinying, et al. A decision making strategy for generating unit tripping under emergency circumstances based on deep reinforcement learning[J]. Proceedings of the CSEE, 2018, 38(1): 109-119. | |
[10] | 王甜婧, 汤涌, 郭强, 等. 基于知识经验和深度强化学习的大电网潮流计算收敛自动调整方法[J]. 中国电机工程学报, 2020, 40(8): 2396-2405. |
WANG Tianjing, TANG Yong, GUO Qiang, et al. Automatic adjustment method of power flow calculation convergence for large-scale power grid based on knowledge experience and deep reinforcement learning[J]. Proceedings of the CSEE, 2020, 40(8): 2396-2405 | |
[11] | HASHMY Y, YU Z, SHI D, et al. Wide-area measurement system-based low frequency oscillation damping control through reinforcement learning[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 5072-5083. |
[12] | DUAN J J, SHI D, DIAO R S, et al. Deep-reinforcement-learning-based autonomous voltage control for power grid operations[J]. IEEE Transactions on Power Systems, 2020, 35(1): 814-817. |
[13] | FENG C, ZHANG J. Reinforcement learning based dynamic model selection for short-term load forecasting[C]// 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference. Washington, USA: IEEE, 2019: 1-5. |
[14] | WANG X N, WANG Y S, SHI D, et al. Two-stage WECC composite load modeling: A double deep Q-learning networks approach[J]. IEEE Transactions on Smart Grid, 2020, 11(5): 4331-4344. |
[15] | ZHANG B, LU X, DIAO R S, et al. Real-time autonomous line flow control using proximal policy optimization[C]// 2020 IEEE Power & Energy Society General Meeting. Montreal, Canada: IEEE, 2020: 1-5. |
[16] | LAN T, DUAN J J, ZHANG B, et al. AI-based autonomous line flow control via topology adjustment for maximizing time-series ATCs[C]// 2020 IEEE Power & Energy Society General Meeting. Montreal, Canada: IEEE, 2020: 1-5. |
[17] | ZHOU Y H, ZHANG B, XU C L, et al. A Data-driven method for fast AC optimal power flow solutions via deep reinforcement learning[J]. Journal of Modern Power Systems & Clean Energy, 2020, 8(6): 1128-1139. |
[18] | YAN Z M, XU Y. Data-driven load frequency control for stochastic power systems: A deep reinforcement learning method with continuous action search[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1653-1656. |
[19] | ADIBI M, WOUDE J. A reinforcement learning approach for frequency control of inverter-based microgrids[C] // IFAC Workshop on Control of Smart Grid and Renewable Energy Systems. Jeju, Republic of Korea: IFAC, 2019: 111-116. |
[20] | ROZADA S, APOSTOLOPOULOU D, ALONSO E. Deep multi-agent reinforcement learning for cost-efficient distributed load frequency control[J]. IET Energy Systems Integration, 2021, 3(3): 327-343. |
[21] | SOOFI A F, MANSHADI S D, LIU G Y, et al. A SOCP relaxation for cycle constraints in the optimal power flow problem[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1663-1673. |
[22] | HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]// Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: IMLS, 2018: 1861-1870. |
[23] | HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[DB/OL]. (2019-01-29)[2018-12-13]. https://arxiv.org/pdf/1812.05905.pdf. |
[24] | ACHIAM J, HELD D, TAMAR A, ABBEEL P. Constrained policy optimization[C]// Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: IMLS, 2017: 22-31. |
[25] | 徐春雷, 吴海伟, 刁瑞盛, 等. 基于深度强化学习算法的“电网脑”及其示范工程应用[J]. 电力需求侧管理, 2021, 23(4): 73-78. |
XU Chunlei, WU Haiwei, DIAO Ruisheng, et al. Deep reinforcement learning-based grid mind and field demonstration application[J]. Power Demand Side Management, 2021, 23(4): 73-78. |
[1] | LI Bobiao, ZHAO Jiachuan, YAO Zhangyi, CHEN Guoliang, LI Jiatai, WANG Pengfei, LIU Linlin. Formulation Design and Performance Study of PSAN-Based Gas Generating Agent [J]. Air & Space Defense, 2025, 8(1): 109-116. |
[2] | ZHAN Heqing1 (詹何庆), HAN Guilai1 (韩贵来), WEI Chuan’an1 (魏传安), LI Zhiqun2* (李治群). Applications of Artificial Intelligence in Cardiac Electrophysiology and Clinical Diagnosis with Magnetic Resonance Imaging and Computational Modeling Techniques [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 53-65. |
[3] | DU Haikuo1,2 (杜海阔), GUO Zhengyu3,4(郭正玉), ZHANG Lulu1,2(章露露), CAI Yunze1,2∗ (蔡云泽). Multi-Objective Loosely Synchronized Search for Multi-Objective Multi-Agent Path Finding with Asynchronous Actions [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 667-677. |
[4] | JIN Feiyu (金飞宇), CHEN Longsheng∗ (陈龙胜), LI Tongshuai (李统帅), SHI Tongxin (石童昕). Distributed Cooperative Anti-Disturbance Control for High-Order MIMO Nonlinear Multi-Agent Systems [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 656-666. |
[5] | DONG Yubo1 (董玉博), CUI Tao1 (崔涛), ZHOU Yufan1 (周禹帆), SONG Xun2 (宋勋), ZHU Yue2 (祝月), DONG Peng1∗ (董鹏). Reward Function Design Method for Long Episode Pursuit Tasks Under Polar Coordinate in Multi-Agent Reinforcement Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655. |
[6] | GENG Zongsheng1 (耿宗盛), ZHAO Dongdong1,2 (赵东东), ZHOU Xingwen1 (周兴文), YAN Lei1 (闫磊), YAN Shi1,2∗ (阎石). Leader-Following Consensus of Multi-Agent Systems via Fully Distributed Event-Based Control [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 640-645. |
[7] | XING Youjing1 (邢优靖), GAO Jinfeng1∗ (高金凤), LIU Xiaoping1, 2 (刘小平), WU Ping1 (吴平). Event-Triggered Fixed-Time Consensus of Second-Order Nonlinear Multi-Agent Systems with Delay and Switching Topologies [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 625-639. |
[8] | WU Zhihai∗ (吴治海), XIE Linbo (谢林柏). Fault-Tolerant Dynamical Consensus of Double-Integrator Multi-Agent Systems in the Presence of Asynchronous Self-Sensing Function Failures [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 613-624. |
[9] | LI Shuyi (李舒逸), LI Minzhe (李旻哲), JING Zhongliang∗ (敬忠良). Multi-Agent Path Planning Method Based on Improved Deep Q-Network in Dynamic Environments [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[10] | CAI Wenjuan, CAO Pengwei, ZHAO Ming, ZHOU Qi. Exploration of Underwater Storage Facilities Application Scenarios [J]. Ocean Engineering Equipment and Technology, 2024, 11(4): 125-130. |
[11] | LIU Yu, WEN Liyan, JIANG Bin, MA Yajie, CUI Yukang. Adaptive Output Consensus of Heterogeneous Multi-Agent System with Switching Topology [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1805-1815. |
[12] | LI Yin, GUO Jianbin, ZHANG Shaowei, WANG Kunyun, CI Huipeng. Safety Modeling Method of Human-Machine System Based-on JACK and Situation Awareness [J]. Air & Space Defense, 2023, 6(1): 29-37. |
[13] | LIU Yahui, SHEN Xingwang, GU Xinghai, PENG Tao, BAO Jinsong, ZHANG Dan. A Dual-System Reinforcement Learning Method for Flexible Job Shop Dynamic Scheduling [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1262-1275. |
[14] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹). Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
[15] | HE Qingbo,JIANG Tianxi. Can AI Be Realized by Manipulating Waves? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 1-2. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 447
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1709
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||