Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (3): 285-294.doi: 10.16183/j.cnki.jsjtu.2022.338
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
HE Zhizhuo1, ZHANG Ying1(), ZHENG Gang1, ZHENG Fang1, HUANG Wandi2, ZHANG Shenxi2, CHENG Haozhong2
Received:
2022-08-30
Revised:
2022-11-20
Accepted:
2022-12-08
Online:
2024-03-28
Published:
2024-03-28
CLC Number:
HE Zhizhuo, ZHANG Ying, ZHENG Gang, ZHENG Fang, HUANG Wandi, ZHANG Shenxi, CHENG Haozhong. Interval Prediction Technology of Photovoltaic Power Based on Parameter Optimization of Extreme Learning Machine[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 285-294.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.338
Tab.4
Comparison of interval prediction results obtained from different methods
日期 | pPINC/% | 方法I | 方法II | 方法III | 方法IV | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pPICP/% | pPINAW/% | pPICP/% | pPINAW/% | pPICP/% | pPINAW/% | pPICP/% | pPINAW/% | |||||
7月1日 | 95 | 95.12 | 2.69 | 95.12 | 2.78 | 97.56 | 7.82 | 93.90 | 3.00 | |||
7月1日 | 90 | 95.12 | 1.93 | 92.68 | 1.95 | 97.56 | 4.50 | 88.78 | 2.01 | |||
7月1日 | 85 | 92.68 | 1.48 | 92.68 | 1.60 | 95.12 | 4.42 | 86.83 | 1.51 | |||
7月1日 | 80 | 87.80 | 1.18 | 87.80 | 1.21 | 90.24 | 3.91 | 85.37 | 1.23 | |||
8月3日 | 95 | 100.00 | 12.87 | 100.00 | 14.31 | 100.00 | 14.35 | 99.76 | 14.27 | |||
8月3日 | 90 | 100.00 | 6.23 | 100.00 | 6.95 | 97.56 | 7.11 | 99.27 | 6.93 | |||
8月3日 | 85 | 97.56 | 3.67 | 95.12 | 3.71 | 95.12 | 4.66 | 97.07 | 3.81 | |||
8月3日 | 80 | 90.24 | 3.03 | 90.24 | 3.11 | 95.12 | 3.99 | 92.44 | 3.12 | |||
9月10日 | 95 | 97.73 | 7.87 | 100.00 | 8.52 | 100.00 | 22.30 | 97.50 | 9.28 | |||
9月10日 | 90 | 97.73 | 4.85 | 100.00 | 4.97 | 100.00 | 8.92 | 96.14 | 5.47 | |||
9月10日 | 85 | 95.45 | 3.36 | 93.18 | 3.64 | 95.45 | 8.46 | 95.68 | 3.64 | |||
9月10日 | 80 | 90.91 | 2.67 | 88.64 | 2.77 | 95.45 | 5.37 | 92.56 | 2.91 |
[1] | REN21 Community. Renewables 2021 global status report[R]. Paris:REN21 Secretariat, 2021. |
[2] |
方晓涛, 严正, 王晗, 等. 考虑概率电压不平衡度越限风险的共享储能优化运行方法[J]. 上海交通大学学报, 2022, 56(7): 827-839.
doi: 10.16183/j.cnki.jsjtu.2021.455 |
FANG Xiaotao, YAN Zheng, WANG Han, et al. A shared energy storage optimal operation method considering the risk of probabilistic voltage unbalance factor limit violation[J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 827-839. | |
[3] | 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14. |
DING Ming, WANG Weisheng, WANG Xiuli, et al. A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14. | |
[4] | 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217. |
LAI Changwei, LI Jinghua, CHEN Bo, et al. Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6). 1201-1217. | |
[5] |
LI Y T, SU Y, SHU L J. An ARMAX model for forecasting the power output of a grid connected photovoltaic system[J]. Renewable Energy, 2014, 66: 78-89.
doi: 10.1016/j.renene.2013.11.067 URL |
[6] | 黄磊, 舒杰, 姜桂秀, 等. 基于多维时间序列局部支持向量回归的微网光伏发电预测[J]. 电力系统自动化, 2014, 38(5): 19-24. |
HUANG Lei, SHU Jie, JIANG Guixiu, et al. Photovoltaic generation forecast based on multidimensional time-series and local support vector regression in microgrids[J]. Automation of Electric Power Systems, 2014, 38(5): 19-24. | |
[7] |
PERSSON C, BACHER P, SHIGA T, et al. Multi-site solar power forecasting using gradient boosted regression trees[J]. Solar Energy, 2017, 150: 423-436.
doi: 10.1016/j.solener.2017.04.066 URL |
[8] |
SHANG C F, WEI P C. Enhanced support vector regression based forecast engine to predict solar power output[J]. Renewable Energy, 2018, 127: 269-283.
doi: 10.1016/j.renene.2018.04.067 URL |
[9] | BEHERA M K, NAYAK N. A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm[J]. Engineering Science & Technology, 2020, 23(1): 156-167. |
[10] | 张倩, 马愿, 李国丽, 等. 频域分解和深度学习算法在短期负荷及光伏功率预测中的应用[J]. 中国电机工程学报, 2019, 39(8): 2221-2230. |
ZHANG Qian, MA Yuan, LI Guoli, et al. Application of frequency domain decomposition and deep learning algorithm in short-term load and photovoltaic power prediction[J]. Proceedings of the CSEE, 2019, 39(8): 2221-2230. | |
[11] |
王岩, 陈耀然, 韩兆龙, 等. 基于互信息理论与递归神经网络的短期风速预测模型[J]. 上海交通大学学报, 2021, 55(9): 1080-1086.
doi: 10.16183/j.cnki.jsjtu.2020.433 |
WANG Yan, CHEN Yaoran, HAN Zhaolong, et al. Short-term wind speed forecasting model based on mutual information and recursive neural network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086. | |
[12] |
KHOSRAVI A, MAZLOUMI E, NAHAVANDI S, et al. Prediction intervals to account for uncertainties in travel time prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(2): 537-547.
doi: 10.1109/TITS.2011.2106209 URL |
[13] |
KHOSRAVI A, NAHAVANDI S, CREIGHTON D, et al. Comprehensive review of neural network-based prediction intervals and new advances[J]. IEEE Transactions on Neural Networks, 2011, 22(9): 1341-1356.
doi: 10.1109/TNN.2011.2162110 pmid: 21803683 |
[14] | 董雷, 周文萍, 张沛, 等. 基于动态贝叶斯网络的光伏发电短期概率预测[J]. 中国电机工程学报, 2013, 33(Sup.1) 38-45. |
DONG Lei, ZHOU Wenping, ZHANG Pei, et al. Short-term photovoltaic output forecast based on dynamic Bayesian network theory[J]. Proceedings of the CSEE, 2013, 33(Sup.1) 38-45. | |
[15] |
VOYANT C, DARRAS C, MUSELLI M, et al. Bayesian rules and stochastic models for high accuracy prediction of solar radiation[J]. Applied Energy, 2014, 114: 218-226.
doi: 10.1016/j.apenergy.2013.09.051 URL |
[16] | KHOSRAVI A, NAHAVANDI S, SRINIVASAN D, et al. Constructing optimal prediction intervals by using neural networks and bootstrap method[J]. IEEE Transactions on Neural Networks & Learning Systems, 2015, 26(8): 1810-1815. |
[17] |
WAN C, XU Z, PINSON P, et al. Probabilistic forecasting of wind power generation using extreme learning machine[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1033-1044.
doi: 10.1109/TPWRS.2013.2287871 URL |
[18] |
KHOSRAVI A, NAHAVANDI S, CREIGHTON D, et al. Lower upper bound estimation method for construction of neural network-based prediction intervals[J]. IEEE Transactions on Neural Networks, 2011, 22(3): 337-346.
doi: 10.1109/TNN.2010.2096824 pmid: 21189235 |
[19] | 叶林, 马明顺, 靳晶新, 等. 考虑风电-光伏功率相关性的因子分析-极限学习机聚合方法[J]. 电力系统自动化, 2021, 45(23): 31-40. |
YE Lin, MA Mingshun, JIN Jingxin, et al. Factor analysis-extreme learning machine aggregation method considering correlation of wind power and photovoltaic power[J]. Automation of Electric Power Systems, 2021, 45(23): 31-40. | |
[20] |
WAN C, LIN J, SONG Y H, et al. Probabilistic forecasting of photovoltaic generation: An efficient statistical approach[J]. IEEE Transactions on Power Systems, 2017, 32(3): 2471-2472.
doi: 10.1109/TPWRS.2016.2608740 URL |
[21] |
LI S, WANG P, GOEL L. A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection[J]. IEEE Transactions on Power Systems, 2016, 31(3): 1788-1798.
doi: 10.1109/TPWRS.2015.2438322 URL |
[22] | 杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(Sup.1): 146-153. |
YANG Xiyun, GUAN Wenyuan, LIU Yuqi, et al. Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(Sup.1): 146-153. | |
[23] | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: A new learning scheme of feedforward neural networks[C]// 2004 IEEE International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2004: 985-990. |
[24] |
HUANG G, ZHU Q, SIEW C. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
doi: 10.1016/j.neucom.2005.12.126 URL |
[25] | KOENKER R. Quantile regression[M]. Cambridge: Cambridge University Press, 2005. |
[26] | 丁明, 鲍玉莹, 毕锐. 应用改进马尔科夫链的光伏出力时间序列模拟[J]. 电网技术, 2016, 40(2): 459-464. |
DING Ming, BAO Yuying, BI Rui. Time series simulation of photovoltaic output using improved Markov chain[J]. Power System Technology, 2016, 40(2): 459-464. | |
[27] | 黎敏, 林湘宁, 张哲原, 等. 超短期光伏出力区间预测算法及其应用[J]. 电力系统自动化, 2019, 43(3): 10-18. |
LI Min, LIN Xiangning, ZHANG Zheyuan, et al. Interval prediction algorithm for ultra-short-term photovoltaic output and its application[J]. Automation of Electric Power Systems, 2019, 43(3): 10-18. | |
[28] | 代倩, 段善旭, 蔡涛, 等. 基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究[J]. 中国电机工程学报, 2011, 31(34): 28-35. |
DAI Qian, DUAN Shanxu, CAI Tao, et al. Short-term PV generation system forecasting model without irradiation based on weather type clustering[J]. Proceedings of the CSEE, 2011, 31(34): 28-35. |
[1] | ZHAO Zhibin, LUO Bin, TANG Ting, WANG Chunfang, SUN Zhonghua. Improved Self-Excited Resonant Wireless Power Transmission System [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 859-867. |
[2] | ZHANG Zhenning1(张振宁),LIU Qiang2(刘强), Lü Chunfeng3(吕春峰),MAO Yimeil(毛义梅),TAo Weil(陶卫),ZHAO Huil*(赵辉). Parameter Optimization and Precision Enhancement of Dual-Coil Eddy Current Sensor [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 596-603. |
[3] | GU Huijie, PENG Chaoyi, SUN Shuhao, LIU Mingtao, XIE Jun, SHI Xionghua, BAO Yong. A Short-Term Production Simulation Model of Wind-PV-Hydrogen-Pumped Storage Zero Carbon Power System [J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 505-512. |
[4] | YANG Bo, ZENG Chunyuan, CHEN Yijun, SHU Hongchun, CAO Pulin. Extreme Learning Machine and Its Application in Parameter Identification of Proton Exchange Membrane Fuel Cell [J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 482-494. |
[5] | XI Jianhui, JIANG Han, CHEN Bo, FU Li. Infrared Multispectral Radiation Temperature Measurement Based on PCA-ELM [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 891-898. |
[6] | LIAO Qishu, HU Weihao, CAO Di, HUANG Qi, CHEN Zhe. Distributed Photovoltaic Net Load Forecasting in New Energy Power Systems [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1520-1531. |
[7] | LI Fen, ZHOU Erchang, SUN Gaiping, BAI Yongqing, TONG Li, LIU Bangyin, ZHAO Jinbin. A Novel Weather Classification Method and Its Application in Photovoltaic Power Prediction [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1510-1519. |
[8] | ZHANG Linlin,HU Xiongwei,LI Peng,SHI Fang,YU Zhihong. Power System Transient Stability Assessment Based on Extreme Learning Machine [J]. Journal of Shanghai Jiaotong University, 2019, 53(6): 749-756. |
[9] | JIANG Wei. Research and Application of Drill String Torsional Vibration in Deepwater Drilling While Jetting the Conductor [J]. Ocean Engineering Equipment and Technology, 2019, 6(1): 450-456. |
[10] | ZHONG Guoqiang,WANG Hao,ZHANG Guohua,QIN Weimin WANG Chengtang,XIONG Junfeng. Analysis and Prediction of Factors Affecting Horizontal Displacement of Foundation Pit Based on RS-MIV-ELM Model [J]. Journal of Shanghai Jiaotong University, 2018, 52(11): 1508-1515. |
[11] | ZHANG Wei,XU Aiqiang,GAO Mingzhe. An Online Condition Prediction Algorithm Based on Cumulative Coherence Measurement [J]. Journal of Shanghai Jiaotong University, 2017, 51(11): 1391-1398. |
[12] | HE Peng-fei. Research and Application of Drill Technique in Bohai Oilfield Buried Hill Reservoir [J]. Ocean Engineering Equipment and Technology, 2017, 4(1): 19-24. |
[13] | LIU Feifei,PENG Di,HE Yanlin,ZHU Qunxiong. Research and Chemical Application of Extreme Learning Based Process Neural Network [J]. Journal of Shanghai Jiaotong University, 2014, 48(07): 977-981. |
[14] | ZHANG Yingtang,MA Chao,LI Zhining,FAN Hongbo. Online Modeling of Kernel Extreme Learning Machine Based on Fast Leave-One-Out CrossValidation [J]. Journal of Shanghai Jiaotong University, 2014, 48(05): 647-652. |
[15] | PAN Feng1* (潘 峰), ZHAO Hai-bo2 (赵海波). Online Sequential Extreme Learning Machine Based Multilayer Perception with Output Self Feedback for Time Series Prediction [J]. Journal of shanghai Jiaotong University (Science), 2013, 18(3): 366-375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||