Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (3): 273-284.doi: 10.16183/j.cnki.jsjtu.2022.074
Special Issue: 《上海交通大学学报》2023年“机械与动力工程”专题
• Mechanical Engineering • Previous Articles Next Articles
SI Guojin, LIN Zeyu, ZHENG Yu, XIA Tangbin(), XI Lifeng
Received:
2022-03-21
Accepted:
2022-04-25
Online:
2023-03-28
Published:
2023-03-30
CLC Number:
SI Guojin, LIN Zeyu, ZHENG Yu, XIA Tangbin, XI Lifeng. Joint Group Maintenance Scheduling and Team Collaboration Sharing Strategy for Multi-Center Leasehold Manufacturing Network[J]. Journal of Shanghai Jiao Tong University, 2023, 57(3): 273-284.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.074
Tab.1
Symbol and meaning of group maintenance decision-making optimization model
符号类别 | 符号 | 含义 |
---|---|---|
集合与索引 | Mi | 租赁系统i中的设备集合(索引k∈Mi= |
Nl | 租赁系统集合(索引i, j∈Nl= | |
G | 成组维护集合(索引g∈G= | |
模型参数 | λhk(t) | 设备k在第h个维护周期的故障率函数 |
chk(Thk) | 设备k在第h个维护周期内的成本率函数 | |
设备k在第h个维护周期的预知维护作业时长 | ||
Pi | 租赁系统i单位时间的维护停机损失 | |
R | 设备运维成本的系数项 | |
LPi | 租赁系统i的租赁服务期时长 | |
Fg | 各成组维护集合的固定成本 | |
wg | 维护时间窗的窗宽 | |
各成组维护集合对应的维护时间窗 | ||
nhg | 各成组维护集合中所需维护的设备数目 | |
执行各成组维护集合所需的维护时长 | ||
决策变量 | αik, g | 租赁系统i的设备k在成组维护集g中时为1,否则为0 |
τik | 租赁系统i的设备k的预知维护作业开始时间 | |
γg | 成组维护集g中有待维护的设备时为1,否则为0 |
Tab.2
Symbol and meaning of collaborative team scheduling optimization model
符号类别 | 符号 | 含义 |
---|---|---|
模型参数 | Crv | 维护团队v∈Vr的单位时间路由成本 |
tij | 租赁系统i到租赁系统j的路由时间 | |
Drv | 维护团队v∈Vr的固定派遣成本 | |
Wrv | 维护团队v∈Vr的单位时间的等待成本 | |
Li | 维护团队v∈Vr的单位时间的延时惩罚成本 | |
qrv | 维护团队v∈Vr一次派遣的最大可维护的设备数目 | |
决策变量 | 维护团队v∈Vr由租赁系统i前往租赁系统j时为1,否则为0 | |
维护团队v∈Vr被派遣以执行成组维护集合g时为1,否则为0 | ||
zi,g | 成组维护集合g由系统i中的设备组成时为1,否则为0 | |
维护团队v∈Vr执行成组维护集合g的实际开始时点 |
Tab.3
Reliability and maintenance parameters of each leased machine
k | i | βk | ηk | bhk | ahk | ||||
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 3.15 | 5 600 | 1.05 | 0.025 | 6 500 | 18 000 | 20 | 66 |
2 | 1.70 | 4 900 | 1.036 | 0.016 | 9 000 | 30 000 | 25 | 74 | |
3 | 2.51 | 5 500 | 1.02 | 0.018 | 6 000 | 17 000 | 14 | 48 | |
4 | 2 | 1.94 | 4 200 | 1.015 | 0.023 | 3 900 | 8 800 | 10 | 38 |
5 | 1.85 | 6 400 | 1.03 | 0.038 | 4 600 | 21 000 | 12 | 68 | |
6 | 2.95 | 5 300 | 1.025 | 0.048 | 3 200 | 6 800 | 8 | 18 | |
7 | 3 | 2.57 | 6 100 | 1.03 | 0.038 | 6 700 | 28 000 | 12 | 68 |
8 | 1.83 | 6 000 | 1.04 | 0.036 | 4 600 | 22 000 | 10 | 22 | |
9 | 2.97 | 4 300 | 1.025 | 0.048 | 3 900 | 7 000 | 8 | 19 | |
10 | 4 | 1.84 | 4 200 | 1.015 | 0.023 | 4 300 | 8 200 | 10 | 39 |
11 | 1.72 | 5 500 | 1.03 | 0.038 | 7 600 | 26 000 | 12 | 68 | |
12 | 1.83 | 3 800 | 1.04 | 0.036 | 9 800 | 16 000 | 10 | 22 | |
13 | 5 | 1.74 | 4 300 | 1.036 | 0.016 | 9 000 | 20 000 | 25 | 72 |
14 | 2.51 | 5 500 | 1.02 | 0.018 | 6 000 | 17 000 | 14 | 48 | |
15 | 3.13 | 4 600 | 1.018 | 0.036 | 7 000 | 13 000 | 16 | 40 | |
16 | 6 | 2.93 | 4 700 | 1.025 | 0.048 | 4 000 | 6 800 | 8 | 18 |
17 | 1.83 | 3 500 | 1.04 | 0.036 | 9 800 | 16 000 | 10 | 22 | |
18 | 1.84 | 4 500 | 1.04 | 0.018 | 8 200 | 21 000 | 25 | 74 | |
19 | 7 | 2.62 | 5 000 | 1.05 | 0.025 | 6 000 | 15 000 | 20 | 66 |
20 | 2.34 | 5 300 | 1.027 | 0.046 | 7 000 | 22 000 | 22 | 60 | |
21 | 2.89 | 4 200 | 1.04 | 0.036 | 9 800 | 16 000 | 10 | 24 | |
22 | 8 | 2.25 | 5 500 | 1.03 | 0.038 | 9 600 | 28 000 | 12 | 68 |
23 | 1.78 | 3 600 | 1.04 | 0.036 | 9 800 | 16 000 | 10 | 22 | |
24 | 1.76 | 5 600 | 1.036 | 0.016 | 8 000 | 30 000 | 25 | 74 | |
25 | 9 | 3.29 | 4 400 | 1.018 | 0.036 | 7 000 | 13 000 | 16 | 40 |
26 | 2.51 | 5 200 | 1.02 | 0.018 | 6 000 | 17 000 | 14 | 48 | |
27 | 1.84 | 4 200 | 1.015 | 0.023 | 3 600 | 8 800 | 10 | 38 |
Tab.4
Travel time between each pair of nodes of multi-center leasehold networkh
节点 | i1 | i2 | i3 | i4 | i5 | i6 | i7 | i8 | i9 | r1 | r2 | r3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
i1 | — | 29 | 23 | 30 | 15 | 10 | 34 | 21 | 35 | 11 | 22 | 37 |
i2 | — | 11 | 49 | 37 | 37 | 15 | 26 | 34 | 18 | 46 | 25 | |
i3 | — | 40 | 28 | 30 | 11 | 16 | 24 | 13 | 37 | 18 | ||
i4 | — | 15 | 23 | 45 | 24 | 28 | 36 | 11 | 39 | |||
i5 | — | 10 | 36 | 16 | 27 | 22 | 9 | 34 | ||||
i6 | — | 40 | 23 | 35 | 20 | 13 | 40 | |||||
i7 | — | 21 | 22 | 24 | 44 | 11 | ||||||
i8 | — | 14 | 18 | 24 | 18 | |||||||
i9 | — | 31 | 33 | 13 | ||||||||
r1 | — | 30 | 30 | |||||||||
r2 | — | 42 | ||||||||||
r3 | — |
Tab.6
System-level group maintenance decision-making in the first cycle
序号 | i | 成组维护集合 | nhg | [ | |
---|---|---|---|---|---|
1 | 1 | {1, 3} | 2 | 20 | [2 898, 2 922] |
2 | 1 | {2} | 1 | 25 | [3 167, 3 191] |
3 | 2 | {4, 6} | 2 | 10 | [3 069, 3 093] |
4 | 2 | {5} | 1 | 12 | [2 845, 2 869] |
5 | 3 | {7} | 1 | 12 | [3 261, 3 285] |
6 | 3 | {8, 9} | 2 | 10 | [2 865, 2 889] |
7 | 4 | {10} | 1 | 10 | [2 799, 2 823] |
8 | 4 | {11, 12} | 2 | 12 | [3 253, 3 277] |
9 | 5 | {13, 14, 15} | 3 | 25 | [3 170, 3 194] |
10 | 6 | {16, 17, 18} | 3 | 25 | [3 011, 3 035] |
11 | 7 | {19, 20, 21} | 3 | 22 | [2 912, 2 936] |
12 | 8 | {22} | 1 | 12 | [2 833, 2 857] |
13 | 8 | {23, 24} | 2 | 25 | [3 113, 3 137] |
14 | 9 | {25} | 1 | 16 | [3 069, 3 093] |
15 | 9 | {26, 27} | 2 | 14 | [2 864, 2 888] |
总维护成本 TMC1=155 017元 |
Tab.7
Network-level team collaboration sharing results in the first cycle
团队序号 | 出发点 | 出发时点 | 组合服务顺序 | 租赁系统服务路线 |
---|---|---|---|---|
1 | 维护中心r1 | 3 011 | (3, 14, 10) | r1→2→9→6→r1 |
2 | 维护中心r1 | 3 113 | (13, 2, 9) | r1→8→1→5→r1 |
3 | 维护中心r2 | 2 865 | (6, 11) | r2→3→7→r2 |
4 | 维护中心r2 | 3 253 | (8, 5) | r2→4→3→r2 |
5 | 维护中心r3 | 2 799 | (7, 12, 15, 1, 4) | r3→4→8→9→1→2→r3 |
总调度成本TSC1=237 200 元 |
Tab.8
Overall maintenance schemes of sequential cycles
h | 成组维护集合G | 最优服务路线 | 对应的团队出发点 |
---|---|---|---|
1 | {1, 3}{2}{4, 6}{5}{7}{8, 9}{10}{11, 12}{13, 14, 15} {16, 17, 18}{19, 20, 21}{22}{23, 24}{25}{26, 27} | (2→9→6, 8→1→5, 3→7, 4→3, 4→8→9→1→2) | (1, 2, 3, 2, 1) |
2 | {1, 3}{2}{4, 6}{5}{7}{8, 9}{10}{11, 12}{13, 14, 15} {16, 17, 18}{19, 20, 21}{22}{23, 24}{25}{26, 27} | (8→3→9, 3→4, 8→9, 6→2, 1→5, 4→1→7→2) | (3, 1, 3, 1, 2, 1) |
3 | {1, 3}{2}{4, 6}{5}{7}{8, 9}{10}{11, 12}{13, 14}{15} {16, 17}{18}{19, 20, 21}{22}{23}{24}{25}{26}{27} | (3→4→5, 6→2→7, 8→9→4, 1→3→9, 6→1, 9→8→2→8→5) | (2, 1, 2, 1, 1, 2) |
4 | {1, 3}{2}{4}{5}{6}{7}{8}{9}{10}{11}{12}{13, 14}{15} {16, 17}{18}{19}{20, 21}{22}{23}{24}{25}{26}{27} | (5→4, 3→6→1→3→7, 9→5→9, 2→9→8→3→6, 8→4, 7→1→2) | (2, 3, 3, 1, 2, 3) |
5 | {1, 3}{2}{4}{5}{6}{7}{8}{9}{10}{11}{12}{13}{14}{15} {16, 17}{18}{19}{20}{21}{22}{23}{24}{25}{26}{27} | (9→6→8, 7→8→2→4→6, 4→5, 8→3→5→3→2→7→1, 9, 1→3→2→9→7) | (3, 1, 2, 1, 3, 3) |
[1] |
GAO J, YAO Y L, ZHU V C Y, et al. Service-oriented manufacturing: A new product pattern and manufacturing paradigm[J]. Journal of Intelligent Manufacturing, 2011, 22(3): 435-446.
doi: 10.1007/s10845-009-0301-y URL |
[2] |
CHANG F, ZHOU G, ZHANG C, et al. A service-oriented dynamic multi-level maintenance grouping strategy based on prediction information of multi-component systems[J]. Journal of Manufacturing Systems, 2019, 53: 49-61.
doi: 10.1016/j.jmsy.2019.09.005 URL |
[3] | 孙博文, 郭闻雨, 夏唐斌, 等. 面向串并联生产系统机会维护的产能平衡导向租赁利润优化策略[J]. 上海交通大学学报, 2019, 53(3): 276-284. |
SUN Bowen, GUO Wenyu, XIA Tangbin, et al. Capacity balancing-oriented leasing profit optimization of opportunistic maintenance for leased series-parallel production system[J]. Journal of Shanghai Jiao Tong University, 2019, 53(3): 276-284. | |
[4] |
SI G, XIA T, PAN E, et al. Service-oriented global optimization integrating maintenance grouping and technician routing for multi-location multi-unit production systems[J]. IISE Transactions, 2022, 54(9): 894-907.
doi: 10.1080/24725854.2021.1957181 URL |
[5] |
CAMCI F. Maintenance scheduling of geographically distributed assets with prognostics information[J]. European Journal of Operational Research, 2015, 245(2): 506-516.
doi: 10.1016/j.ejor.2015.03.023 URL |
[6] |
LÓPEZ-SANTANA E, AKHAVAN-TABATABAEI R, DIEULLE L, et al. On the combined maintenance and routing optimization problem[J]. Reliability Engineering & System Safety, 2016, 145: 199-214.
doi: 10.1016/j.ress.2015.09.016 URL |
[7] |
IRAWAN C A, OUELHADJ D, JONES D, et al. Optimisation of maintenance routing and scheduling for offshore wind farms[J]. European Journal of Operational Research, 2017, 256(1): 76-89.
doi: 10.1016/j.ejor.2016.05.059 URL |
[8] |
NGUYEN H S H, DO P, VU H C, et al. Dynamic maintenance grouping and routing for geographically dispersed production systems[J]. Reliability Engineering & System Safety, 2019, 185: 392-404.
doi: 10.1016/j.ress.2018.12.031 URL |
[9] | 司国锦, 夏唐斌, 宋亚, 等. 面向租赁服务网络广域运维的3层机会维护调度策略[J]. 上海交通大学学报, 2019, 53(4): 387-395. |
SI Guojin, XIA Tangbin, SONG Ya, et al. Triple-level opportunistic maintenance optimization policy for multi-location operation and maintenance of leasehold service network[J]. Journal of Shanghai Jiao Tong University, 2019, 53(4): 387-395. | |
[10] |
DIAZ-RAMIREZ J, HUERTAS J I, TRIGOS F. Aircraft maintenance, routing, and crew scheduling planning for airlines with a single fleet and a single maintenance and crew base[J]. Computers & Industrial Engineering, 2014, 75: 68-78.
doi: 10.1016/j.cie.2014.05.027 URL |
[11] | SCHROTENBOER A H, UIT HET BROEK M A, JARGALSAIKHAN B, et al. Coordinating technician allocation and maintenance routing for offshore wind farms[J]. Computers & Operations Research, 2018, 98, 185-197. |
[12] | 韩笑乐, 鞠留红, 钱丽娜, 等. 集装箱进出口码头泊位-堆场协同分配的动态决策[J]. 上海交通大学学报, 2019, 53(1): 69-76. |
HAN Xiaole, JU Liuhong, QIAN Lina, et al. Dynamic decision making for the intergrated allocation of berth and import/export container terminals[J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 69-76. | |
[13] | LI J, LI T, YU Y, et al. Discrete firefly algorithm with compound neighborhoods for asymmetric multi-depot vehicle routing problem in the maintenance of farm machinery[J]. Applied Soft Computing, 2019, 81: 105460. |
[14] |
辜勇, 袁源乙, 张列, 等. 带时间窗的多中心半开放式车辆路径问题[J]. 中国机械工程, 2020, 31(14): 1733-1740.
doi: 10.3969/j.issn.1004-132X.2020.14.013 |
GU Yong, YUAN Yuanyi, ZHANG Lie, et al. Multi-depot half open vehicle routing problem with time windows[J]. China Mechanical Engineering, 2020, 31(14): 1733-1740.
doi: 10.3969/j.issn.1004-132X.2020.14.013 |
|
[15] | WANG Y, ZHANG J, GUAN X, et al. Collaborative multiple centers fresh logistics distribution network optimization with resource sharing and temperature control constraints[J]. Expert Systems with Applications, 2021, 165: 113838. |
[1] | GUO Junfeng, WANG Miaosheng, WANG Zhiming. Fault Diagnosis of Rolling Bearing with Roller Spalling Based on Two-Step Transfer Learning on Unbalanced Dataset [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1512-1521. |
[2] | LI Xinlong, RAN Yan, ZHANG Genbao, HE Yan. Sequential Preventive Maintenance Strategy Considering Difference of Maintenance Effect [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1522-1530. |
[3] | BEN Xurui, ZHOU Xiaojun. Opportunistic Maintenance Modeling of Finishing Rolls Considering Dismounting Constraints [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 996-1004. |
[4] | WANG Hanyu, CHEN Zhen, ZHOU Di, CHEN Zhaoxiang, PAN Ershun. Nonlinear Degradation Modeling and Residual Life Prediction for Rollers Based on Kernel-based Wiener Process [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1037-1045. |
[5] | CAO Lei, AN Xiangxin, XIA Tangbin, ZHENG Meimei, XI Lifeng. Multi-Level Optimization Policy of Opportunistic Maintenance and Inventory Control of k-out-of-n System [J]. Journal of Shanghai Jiao Tong University, 2023, 57(3): 285-296. |
[6] | YE Hongqing, SU Huade, ZHENG Meimei, XIA Tangbin. Joint Optimization of Replacement and Spare Parts Ordering with Dual Sourcing [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1359-1367. |
[7] | MA Hangyu, ZHOU Di, WEI Yujie, WU Wei, PAN Ershun. Intelligent Bearing Fault Diagnosis Based on Adaptive Deep Belief Network Under Variable Working Conditions [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1368-1377. |
[8] | SHU Junqing, XU Yuhui, XIA Tangbin, PAN Ershun, XI Lifeng. A Multiscale Similarity Ensemble Methodology for Remaining Useful Life Prediction in Multiple Fault Modes [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 564-575. |
[9] | ZHUO Pengcheng, YAN Jin, ZHENG Meimei, XIA Tangbin, XI Lifeng. GA-OIHF Elman Neural Network Algorithm for Fault Diagnosis of Full Life Cycle of Rolling Bearing [J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1255-1262. |
[10] | TIAN Xueyan, WANG Mengya, PAN Ershun. Imperfect Maintenance Policy for a Two-Machine One-Buffer System Based on Markov Decision Process [J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 480-488. |
[11] | GAO Yingming, CHEN Zhen, ZHANG Xiufang, PAN Ershun. Reliability Modeling and Maintenance Optimization of Manufacturing System Based on Stochastic Flow Network and Markov Process [J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 229-235. |
[12] | SHI Guo, SI Guojin, XIA Tangbin, PAN Ershun, XI Lifeng. Joint Optimization Strategy of Predictive Maintenance and Tool Replacement for Energy Consumption Control [J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1235-1243. |
[13] | . Robust Design Method for the Seizure Problem of Hydraulic Slide Valve [J]. Journal of Shanghai Jiaotong University, 2011, 45(11): 1637-1642. |
[14] | . Fault Diagnosis with Bayes of Sequential Discrete Event Mechatronic Systems Based on Petri Net [J]. Journal of Shanghai Jiaotong University, 2011, 45(11): 1642-1646. |
[15] | TAN Yuan-Ling, CHU Xue-Ning, ZHANG Zai-Fang. Service Attribute Decision Making Based on Revised Importance Performance Analysis [J]. Journal of Shanghai Jiaotong University, 2011, 45(09): 1281-1287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||