Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (11): 1509-1517.doi: 10.16183/j.cnki.jsjtu.2021.103
• Biomedical Engineering • Previous Articles Next Articles
LÜ Chaofan1, YAN Yingjie2, LIN Li2,3, CHAI Gang2, BAO Jinsong1()
Received:
2021-04-05
Online:
2022-11-28
Published:
2022-12-02
Contact:
BAO Jinsong
E-mail:bao@dhu.edu.cn
CLC Number:
LÜ Chaofan, YAN Yingjie, LIN Li, CHAI Gang, BAO Jinsong. Design of Mandibular Angle Osteotomy Plane Based on Point Cloud Semantic Segmentation Algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1509-1517.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.103
[1] |
ZHANG C, MA M W, XU J J, et al. Application of the 3D digital ostectomy template (DOT) in mandibular angle ostectomy (MAO)[J]. Journal of Cranio-Maxillofacial Surgery, 2018, 46(10): 1821-1827.
doi: 10.1016/j.jcms.2018.07.026 URL |
[2] | MENG H Y, GAO L, LAI Y K, et al. VV-net: Voxel VAE net with group convolutions for point cloud segmentation[C]∥2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 8499-8507. |
[3] |
WANG Z J, LU F. VoxSegNet: Volumetric CNNs for semantic part segmentation of 3D shapes[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(9): 2919-2930.
doi: 10.1109/TVCG.2019.2896310 URL |
[4] |
LE T, BUI G, DUAN Y. A multi-view recurrent neural network for 3D mesh segmentation[J]. Computers & Graphics, 2017, 66: 103-112.
doi: 10.1016/j.cag.2017.05.011 URL |
[5] | KUNDU A, YIN X Q, FATHI A, et al. Virtual multi-view fusion for 3D semantic segmentation[C]∥Computer Vision-ECCV 2020. Glasgow, UK: Springer, 2020: 518-535. |
[6] | CHARLES R Q, HAO S, MO K C, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 77-85. |
[7] | CHARLES R Q, LI Y, HAO S, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: NIPS, 2017: 5099-5108. |
[8] | WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12. |
[9] | LIU Y C, FAN B, XIANG S M, et al. Relation-shape convolutional neural network for point cloud analysis[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 8887-8896. |
[10] | WANG L, HUANG Y C, HOU Y L, et al. Graph attention convolution for point cloud semantic segmentation[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 10288-10297. |
[11] | HU Q Y, YANG B, XIE L H, et al. RandLA-net: Efficient semantic segmentation of large-scale point clouds[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 11105-11114. |
[12] |
GUO M H, CAI J X, LIU Z N, et al. PCT: Point cloud transformer[J]. Computational Visual Media, 2021, 7(2): 187-199.
doi: 10.1007/s41095-021-0229-5 URL |
[13] | 赵沁园, 刘磊, 章一新, 等. 手术导板应用于下颌骨精确截骨的前瞻性随机对照研究[J]. 中国美容整形外科杂志, 2018, 29(9): 524-526. |
ZHAO Qinyuan, LIU Lei, ZHANG Yixin, et al. The accuracy of a surgical template for mandibular angle osteotomy: A prospective randomized controlled trial[J]. Chinese Journal of Aesthetic and Plastic Surgery, 2018, 29(9): 524-526. | |
[14] | LI J X, CHEN B M, LEE G H. SO-net: Self-organizing network for point cloud analysis[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 9397-9406. |
[15] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008. |
[16] | LEE J, YOON W, KIM S, et al. BioBERT: A pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics, 2019, 36(4): 1234-1240. |
[17] | DONG L H, XU S, XU B. Speech-transformer: A no-recurrence sequence-to-sequence model for speech recognition[C]∥2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary, AB, Canada: IEEE, 2018: 5884-5888. |
[18] | SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations[C]∥Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2018: 464-468. |
[19] |
MAO X Y, FU X, NIU F, et al. Three-dimensional analysis of mandibular angle classification and aesthetic evaluation of the lower face in Chinese female adults[J]. Annals of Plastic Surgery, 2018, 81(1): 12-17.
doi: 10.1097/SAP.0000000000001463 pmid: 29762450 |
[1] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[2] | WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849. |
[3] | LI Gaoyang, JIA Aiting, HONG Bo, LI Xiangwen, GAO Jiapeng. Fast 3D Pose Estimation Method for High Speed GMAW of Large Box Girders [J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 794-800. |
[4] | TAO Haihong, YAN Yingfei. A Netted Radar Node Selection Algorithm Based on GA-CNN [J]. Air & Space Defense, 2022, 5(1): 1-5. |
[5] | JIN Lijie, WU Yatao. Radar Signal Modulation Type Recognition Based on Double CNN [J]. Air & Space Defense, 2022, 5(1): 66-70. |
[6] | WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[7] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[8] | WANG Xingzhi, ZHAI Haibao, YAN Yaqin, WU Qingxi. Pre-Dispatching Method of New Generation Dispatching and Control System Based on Digital Twin and Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 37-41. |
[9] | WANG Yan, CHEN Yaoran, HAN Zhaolong, ZHOU Dai, BAO Yan. Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086. |
[10] | ZOU Yue (邹 悦), LI Lin (李 霖), YANG Xubo (杨旭波). Lightweight Method for Vehicle Re-identification Using Reranking Algorithm Based on Topology Information of Surveillance Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[11] | LI Lin (李 霖), HU Zeyu(胡泽宇), YANG Xubo (杨旭波). Intelligent Analysis of Abnormal Vehicle Behavior Based on a Digital Twin [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[12] | CAI Yunze, ZHANG Yanjun. Infrared Dim and Small Target Detection Based on Dual-Channel Feature-Enhancement Integrated Attention Network [J]. Air & Space Defense, 2021, 4(4): 14-22. |
[13] | WANG Yu, YU Yuefeng, ZHU Xiaolei, ZHANG Zhongxiao. Gas-Fired Flame Stability Based on Optical Flow Method and Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 462-470. |
[14] | LI Guanyu (李冠玉), ZHANG Fengqin (张凤芹), LIU Qiegen (刘且根) . Distribution-Transformed Network for Impulse Noise Removal [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 543-553. |
[15] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Rethinking the Dice Loss for Deep Learning Lesion Segmentation in Medical Images [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 93-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||