Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (10): 1341-1348.doi: 10.16183/j.cnki.jsjtu.2021.126
• Materials Science and Engineering • Previous Articles Next Articles
WANG Zhuoxin1, ZHAO Haitao1(), XIE Yuehan2, REN Hantao2, YUAN Mingqing1, ZHANG Boming3, CHEN Ji’an1
Received:
2021-04-09
Online:
2022-10-28
Published:
2022-11-03
Contact:
ZHAO Haitao
E-mail:zht@sjtu.edu.cn.
CLC Number:
WANG Zhuoxin, ZHAO Haitao, XIE Yuehan, REN Hantao, YUAN Mingqing, ZHANG Boming, CHEN Ji’an. Prediction of Modulus of Composite Materials by BP Neural Network Optimized by Genetic Algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1341-1348.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.126
Tab.1
Some samples in the data set (normalized)
试验 编号 | x | ν | y | z1 | z2 |
---|---|---|---|---|---|
1 | 0.463 068 | 0.637 681 | 0.403 461 | 0.652 174 | 0.60 |
2 | 0.414 773 | 0.543 478 | 0.234 987 | 0.608 696 | 0.60 |
3 | 0.696 023 | 0.471 014 | 0.388 657 | 0.608 696 | 0.20 |
4 | 0.510 417 | 0.710 145 | 0.434 320 | 0.608 696 | 0.55 |
5 | 0.754 735 | 0.731 884 | 0.645 538 | 0.521 739 | 0.70 |
6 | 0.775 568 | 0.789 855 | 0.604 671 | 0.565 217 | 0.70 |
7 | 0.778 409 | 0.347 826 | 0.576 939 | 0.608 696 | 0.70 |
[1] | 刘陈续, 于桂兰. 基于神经网络的层状周期结构能量传输谱预测[J]. 上海交通大学学报, 2021, 55(1): 88-95. |
LIU Chenxu, YU Guilan. Prediction of energy transmission spectrum of layered periodic structure based on neural network[J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 88-95. | |
[2] |
GELAYOL G, MINOO N, KHASHAYAR B, et al. A machine learning case study with limited data for prediction of carbon fiber mechanical properties[J]. Computers in Industry, 2019, 105: 123-132.
doi: 10.1016/j.compind.2018.11.004 URL |
[3] |
ZHANG Z S, HONG Y, HOU B, et al. Accelerated discoveries of mechanical properties of graphene using machine learning and high-throughput computation[J]. Carbon, 2019, 148: 115-123.
doi: 10.1016/j.carbon.2019.03.046 URL |
[4] | CHEN G, WANG H Y, BEZOLD A, et al. Strengths prediction of particulate reinforced metal matrix composites (PRMMCs) using direct method and artificial neural network[J]. Composite Structures, 2019, 223: 89-91. |
[5] |
QI Z C, ZHANG N X, LIU Y, et al. Prediction of mechanical properties of carbon fiber based on cross-scale FEM and machine learning[J]. Composite Structures, 2019, 212: 199-206.
doi: 10.1016/j.compstruct.2019.01.042 URL |
[6] | 杨红, 程万里, 任丽丽. 高温高压蒸汽改性落叶松木材力学性能预测模型的建立[J]. 东北林业大学学报, 2016, 44(4): 77-80. |
YANG Hong, CHENG Wanli, REN Lili. Establishment of prediction model for mechanical properties of larch wood modified by high temperature and high pressure steam[J]. Journal of Northeast Forestry University, 2016, 44(4): 77-80. | |
[7] | 白晓明. 基于数据挖掘的复合材料宏—细观力学模型研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
BAI Xiaoming. Research on macro-micromechanics model of composite materials based on data mining[D]. Harbin:Harbin Institute of Technology, 2016. | |
[8] | 张博. 稀土基化合物的磁熵变及其机器学习研究[D]. 北京: 中国科学院大学(中国科学院物理研究所), 2018. |
ZHANG Bo. Magnetic entropy change of rare earth-based compounds and its machine learning research[D]. Beijing: University of Chinese Academy of Sciences (Institute of Physics, Chinese Academy of Sciences), 2018. | |
[9] |
QI Z C, LIU Y, CHEN W L. An approach to predict the mechanical properties of CFRP based on cross-scale simulation[J]. Composite Structures, 2018, 210: 339-347.
doi: 10.1016/j.compstruct.2018.11.056 URL |
[10] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
[11] | FU L, LI P F. The research survey of system identification method[C]//International Conference on Intelligent Human-machine Systems & Cybernetics. Hangzhou, China: IEEE Computer Society, 2013: 397-401. |
[12] |
DING S F, SU C Y, YU J Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2): 153-162.
doi: 10.1007/s10462-011-9208-z URL |
[13] | 曾坤, 姜志侠. 基于多遗传算法的BP神经网络人脸识别[J]. 计算机技术与发展, 2021, 31(1): 77-82. |
ZENG Kun, JIANG Zhixia. Face recognition of BP neural network based on multiple genetic algorithms[J]. Computer Technology and Development, 2021, 31(1): 77-82. | |
[14] | ZHANG H, LI S X, LIU X Y. Prediction of total order amount based on BP neural network optimized by genetic algorithm[C]//Proceedings of 2019 2nd International Conference on Mechanical, Electronic and Engineering Technology. Shanxi, China: Computer Science and Electronic Technology International Society, 2019: 106-111. |
[15] | WANG X P, CAO L M. Genetic algorithm theory, application and software implementation[M]. Xi’an: WestAnn Traffic University Press, 2002. |
[16] | KINGMA D, BA J. Adam: A method for stochastic optimization[DB/OL]. (2014-11-02)[2021-04-05]. https://xueshu.baidu.com/usercenter/paper/show?paperid=37a73866f09edd03830b234716447e4f. |
[17] | 朱攀星, 杨绍昌. X850树脂预浸料材料工艺性研究[J]. 科技展望, 2016, 26(24): 70+72. |
ZHU Panxing, YANG Shaochang. Research on the processability of X850 resin prepreg material[J]. Science and Technology Outlook, 2016, 26(24): 70+72. |
[1] | YAN Qing, LU Jiansha, JIANG Weiguang, SHAO Yiping, TANG Hongtao, LI Yingde. Path Optimization of Stacker in Compact Storage System with Dual-Port Layout [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 858-867. |
[2] | ZHOU Tianyan, FENG Xiaoen, FAN Yunfeng, DONG Shiyin, LI Yuqing, JIN Huizhong. Optimization Model of Ground Air Defense Force Deployment to Avoid Excessive Air Defense Firepower [J]. Air & Space Defense, 2022, 5(4): 19-23. |
[3] | WANG Xiaojian, HONG Jun, CHEN Jinghua, LI Hongguang. Weight Reduction Study of Box Structure Based on Parametric Modeling and Response Surface Optimization [J]. Air & Space Defense, 2022, 5(4): 60-66. |
[4] | LIU Jiea (刘 洁), ZHANG Baojib∗ (张宝吉). Multiobjective Optimization of Hull Form Based on Global Optimization Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 346-355. |
[5] | LIANG Liang1 (梁 良), SHI Ying1∗ (石 英), MOU Junmin2∗ (牟军敏). Submarine Multi-Model Switching Control Under Full Working Condition Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 402-410. |
[6] | DU Jian1∗ (杜 剑), ZHAO Xu2 (赵 旭), GUO Liming2 (郭力铭), WANG Jun2 (王 军). Machine Learning-Based Approach to Liner Shipping Schedule Design [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 411-423. |
[7] | JIA Dao, CHEN Lei, ZHU Zhipeng, YU Yao, CHI Dejian. Application of Machine Learning in Fuze- Warhead System Design [J]. Air & Space Defense, 2022, 5(2): 27-31. |
[8] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹). Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
[9] | ZHOU Yutai, XU Yue, LI Yu, JIANG Guotao. Genetic Algorithm Based Method of Optimal Deployment for Three-Dimensional Radar Networks Under Jamming Situation [J]. Air & Space Defense, 2022, 5(1): 52-59. |
[10] | ZHOU Yi, QIN Kangping, SUN Jinwen, FAN Dongqi, ZHENG Yiming. Real-Time Risk Evaluation Method of Power System Equipment and N-m Fault Contingency Plan Generation Under Typhoon Meteorological Environment [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 22-30. |
[11] | LI Cuiming, WANG Ning, ZHANG Chen. Hierarchical Mission Planning for Cleaning Photovoltaic Panels Based on Improved Genetic Algorithm [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1169-1174. |
[12] | HE Xiawei, CAI Yunze, YAN Lingling. A Combined Residual Detection Method of Reaction Wheel for Fault Detection [J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 716-728. |
[13] | JIN Yudong (靳宇栋), FENG Jiabo (冯家波), ZHANG Weijun (张伟军). UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 431-445. |
[14] | GU Yifan, ZHAO Wenlong, TANG Shanjun, YANG Qingyu, ZHENG Xin. Research on Target Spatial Collaborative Positioning Methods for Distributed Active/Passive Imaging Detection System [J]. Air & Space Defense, 2021, 4(4): 119-126. |
[15] | ZHU Song, QIAN Xiaochao, LU Yingbo, LIU Fei. An XGBoost-Based Effectiveness Prediction Method of Equipment System-of-Systems [J]. Air & Space Defense, 2021, 4(2): 1-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||