Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (7): 944-952.doi: 10.16183/j.cnki.jsjtu.2021.375
• Transportation Engineering • Previous Articles Next Articles
LI Jinjiang, XIANG Xianbo(), LIU Chuan, YANG Shaolong
Received:
2021-09-26
Online:
2022-07-28
Published:
2022-08-16
Contact:
XIANG Xianbo
E-mail:xbxiang@hust.edu.cn.
CLC Number:
LI Jinjiang, XIANG Xianbo, LIU Chuan, YANG Shaolong. Robust Seabed Terrain Following Control of Underactuated AUV with Prescribed Performance Guidance Law Under Time Delay of Actuator[J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 944-952.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.375
Tab.1
Hydrodynamic model parameter of the AUV in simulation
参数 | 取值 |
---|---|
m/kg | 30.48 |
W/N | 299 |
B/N | 306 |
Iyy/(N·kg·m2) | 3.45 |
xg/m | 0 |
zg/m | 0.019 6 |
| -4.88 |
| -1.93 |
Mw|w|/kg | 3.18 |
Mq|q|/(kg·m2·rad-2) | -188 |
Muq/(kg·m·rad-1) | -2 |
Muw/kg | 24 |
Muuδ/(kg·rad-1) | -6.15 |
| -35.5 |
zw|w|/(kg·m-1) | -131 |
zq|q|/(kg·m2·rad-2) | -0.632 |
zuw/(kg·m-1) | -28.6 |
zuq/(kg·rad-1) | -5.22 |
λδ/s | 1.2 |
[21] | YU Caoyang. On fuzzy-approximator-compensator-based saturated tracking control of autonomous underwater vehicles with configuration switching[D]. Wuhan: Huazhong University of Science and Technology, 2018. |
[22] |
LI X, LUO X, WANG J, et al. Finite-time consensus of nonlinear multi-agent system with prescribed performance[J]. Nonlinear Dynamic, 2018, 91(4): 2397-2409.
doi: 10.1007/s11071-017-4020-1 URL |
[1] | 于曹阳, 向先波, 张嘉磊, 等. 基于反步法的欠驱动水下机器人鲁棒定深控制[J]. 华中科技大学学报(自然科学版), 2017, 45(10): 117-121. |
YU Caoyang, XIANG Xianbo, ZHANG Jialei, et al. Robust depth control of under-actuated underwater vehicles based on backstepping[J], Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(10): 117-121. | |
[2] |
DO K D, PAN J. Robust path-following of underactuated ships: Theory and experiments on a model ship[J]. Ocean Engineering, 2006, 33(10): 1354-1372.
doi: 10.1016/j.oceaneng.2005.07.011 URL |
[3] |
WANG N, SUN Z, YIN J, et al. Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns[J]. Ocean Engineering, 2019, 176(3): 57-64.
doi: 10.1016/j.oceaneng.2019.02.017 URL |
[4] | 余亚磊, 苏荣彬, 冯旭, 等. 基于速变LOS的无人船反步自适应路径跟踪控制[J]. 中国舰船研究, 2019, 14(3): 163-171. |
YU Yalei, SU Rongbin, FENG Xu, et al. Tracking control of backstepping adaptive path of unmanned surface vessels based on surge-varying LOS[J]. Chinese Journal of Ship Research, 2019, 14(3): 163-171. | |
[5] |
YU C, XIANG X, WILSON P A, et al. Guidance-error-based robust fuzzy adaptive control for bottom following of a flight-style AUV with saturated actuator dynamics[J]. IEEE Transactions on Cybernetic, 2020, 50(5): 1887-1899.
doi: 10.1109/TCYB.2018.2890582 URL |
[6] |
ZHENG Z, FEROSKHAN M. Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2564-2575.
doi: 10.1109/TMECH.2017.2756110 URL |
[7] |
WEN C, ZHOU J, LIU Z. Robust adaptive control of uncertain nonlinear systems[J]. IEEE Transactions on Automatic Control, 2002, 56(7): 1672-1678.
doi: 10.1109/TAC.2011.2122730 URL |
[8] |
JIN X. Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraints[J]. Automatica, 2016, 68(1): 228-236.
doi: 10.1016/j.automatica.2016.01.064 URL |
[9] |
SHOJAEI K. Neural adaptive robust control of underactuated marine surface vehicles with input saturation[J]. Applied Ocean Research, 2015, 53(10): 267-278.
doi: 10.1016/j.apor.2015.09.010 URL |
[10] |
THIEME C A, UTNE I B. Safety performance monitoring of autonomous marine systems[J]. Reliability Engineering & System Safety, 2017, 159(3): 264-275.
doi: 10.1016/j.ress.2016.11.024 URL |
[11] | SUH J, KIM B, YI K. Design and evaluation of a driving mode decision algorithm for automated driving vehicle on a motorway[J]. IFAC-PapersOnLine, 2016, 49(11): 115-120. |
[12] |
HEGDE J, HENRIKSEN E H, UTNE I B, et al. Development of safety envelopes and subsea traffic rules for autonomous remotely operated vehicles[J]. Journal of Loss Prevention in the Process Industries, 2019, 60: 145-158.
doi: 10.1016/j.jlp.2019.03.006 URL |
[13] | 徐国华, 段国强, 童剑, 等. 智能水下机器人自救模糊专家系统研究[J]. 中国造船, 2004, 45(12): 271-275. |
XU Guohua, DUAN Guoqiang, TONG Jian, et al. Fuzzy expert system of AUV self rescue[J]. Shipbuilding of China, 2004, 45(12): 271-275. | |
[14] | 陈柱, 徐国华, 王冠学, 等. AUV主动应急自救机制与策略[J]. 中国舰船研究, 2018, 13(6): 120-127. |
CHEN Zhu, XU Guohua, WANG Guanxue, et al. AUV emergency self-rescue mechanism and strategy[J]. Chinese Journal of Ship Research, 2018, 13(6): 120-127. | |
[15] |
QIN H, CHEN H, SUN Y, et al. Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying node systems with error constraints[J]. Ocean Engineering, 2019, 189: 106341.
doi: 10.1016/j.oceaneng.2019.106341 URL |
[16] |
ZHAO L, YU J, LIN C, et al. Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode[J]. Applied Mathematics and Computation, 2017, 312: 23-35.
doi: 10.1016/j.amc.2017.05.049 URL |
[17] |
BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099.
doi: 10.1109/TAC.2008.929402 URL |
[18] |
CHEN L, CUI R, YANG C, et al. Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: Theory and experimental results[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 4024-4035.
doi: 10.1109/TIE.2019.2914631 URL |
[19] |
DAI S, HE S, WANG M, et al. Adaptive neural control of underactuated surface vessels with prescribed performance guarantees[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(12): 3686-3698.
doi: 10.1109/TNNLS.2018.2876685 URL |
[20] |
ZHENG Z. Moving path following control for a surface vessel with error constraint[J]. Automatica, 2020, 118: 109040.
doi: 10.1016/j.automatica.2020.109040 URL |
[21] | 于曹阳. 基于模糊逼近补偿法的AUV位形切换饱和跟踪控制研究[D]. 武汉: 华中科技大学, 2018. |
[1] | YANG Tao (杨 涛), ZHAO Jiankang∗ (赵健康). Solution to Long-Range Continuous and Precise Positioning in Deep Ocean for Autonomous Underwater Vehicles Using Acoustic Range Estimation and Inertial Sensor Measurements [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 281-297. |
[2] | FANG Haolin (房浩霖), ZHANG Jiawen (张家闻), LI Jiawang∗ (李家旺). Switched Three-Dimensional Decoupling Stabilization of Underactuated Autonomous Underwater Vehicles [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 383-392. |
[3] | WU Lihong, FENG Xisheng, YE Zuolin, LI Yiping. Physics-Based Simulation of AUV Forced Diving by Self-Propulsion [J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 290-296. |
[4] | LI Yueming,WANG Xiaoping,ZHANG Junjun,CAO Jian,ZHANG Yinghao. X-Rudder Autonomous Underwater Vehicle Control Allocation Based on Improved Quadratic Programming Algorithm [J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 524-531. |
[5] | PANG Shikun,LIANG Xiaofeng,LI Yinghui,YI Hong. Collision Avoidance Strategy for Autonomous Underwater Vehicle Based on Null-Space-Based Behavioral Approach [J]. Journal of Shanghai Jiaotong University, 2020, 54(3): 295-304. |
[6] | WANG Jian, ZHAO Hongyu, ZHONG Jihong, WANG Mengyu, CAI Zhijun. Robust Controller Design for Near Space Vehicle [J]. Air & Space Defense, 2019, 2(3): 53-58. |
[7] | HE Changyu,SHI Guanglin,GUO Qinyang,WANG Dongmei. Adaptive Robust Control Strategy of Valve Controlled Asymmetric Cylinder Position Control System [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 209-216. |
[8] | DU Xiaoxu,CUI Hang. Three-Dimensional Motion Simulation and Analysis for Lateral Separation of Autonomous Underwater Vehicle Load [J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1480-1487. |
[9] |
ZHU Xinyao1,SONG Baowei2,XU Gang1,YANG Songlin1.
Research on Landing Strategy and Influencing Factors of an Autonomous Underwater Vehicle with Supporting Mechanism [J]. Journal of Shanghai Jiaotong University, 2017, 51(10): 1241-1251. |
[10] | DU Xiao-xu1* (杜晓旭), LI Xin-liang1 (李新亮), HAO Cheng-zhi2 (郝承智), WANG You-jiang1 (王有江). Stability Analysis of Two-Point Mooring Autonomous Underwater Vehicle [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(5): 618-624. |
[11] | XU Zhangbao,MA Dawei,YAO Jianyong,DONG Zhenle,YANG Guichao. Indirect Adaptive Robust Control of DC Motors with Finite-Time Disturbance Observer [J]. Journal of Shanghai Jiaotong University, 2015, 49(09): 1281-1287. |
[12] | Lv Xueqin1,ZHANG Ke2,WU Yixiong2. Seam Yracking Control Mechanism and Theoretical Analysis of Welding Mobile Robot [J]. Journal of Shanghai Jiaotong University, 2015, 49(03): 371-374. |
[13] | ZHU Dongjiana,MA Ninga,b,GU Xiechonga,b. Adaptive Fuzzy Compensation Control for Nonlinear Ship CourseKeeping [J]. Journal of Shanghai Jiaotong University, 2015, 49(02): 250-254. |
[14] | WANG Si-ling1* (王司令), SONG Bao-wei1 (宋保维), DUAN Gui-lin2 (段桂林), DU Xi-zhao3 (杜喜昭). Automatic Wireless Power Supply System to Autonomous Underwater Vehicles by Means of Electromagnetic Coupler [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(1): 110-114. |
[15] | HUA Hai-de1* (华海德), MA Ning1 (马 宁), MA Jie1 (马 捷), ZHU Xing-yu2 (朱星宇). Robust Intelligent Control Design for Marine Diesel Engine [J]. Journal of shanghai Jiaotong University (Science), 2013, 18(6): 660-666. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||