[1] |
DONOGHUE J P. Bridging the brain to the world: A perspective on neural interface systems[J]. Neuron, 2008, 60(3): 511-521.
doi: 10.1016/j.neuron.2008.10.037
URL
|
[2] |
TORRES C V, IZA-VALLEJO B, NAVAS-GARCÍA M, et al. Deep brain stimulation in drug-resistant epilepsy[J]. Revista De Neurologia, 2020, 70(5): 183-192.
|
[3] |
KOZAI T D Y, JAQUINS-GERSTL A S, VAZQUEZ A L, et al. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies[J]. ACS Chemical Neuroscience, 2015, 6(1): 48-67.
doi: 10.1021/cn500256e
URL
|
[4] |
LECOMTE A, DESCAMPS E, BERGAUD C. A review on mechanical considerations for chronically-implanted neural probes[J]. Journal of Neural Engineering, 2018, 15(3): 031001.
doi: 10.1088/1741-2552/aa8b4f
URL
|
[5] |
CEYSSENS F, WELKENHUYSEN M, PUERS R. Anisotropic etching in (3 1 1) Si to fabricate sharp resorbable polymer microneedles carrying neural electrode arrays[J]. Journal of Micromechanics and Microengineering, 2019, 29(2): 027001.
doi: 10.1088/1361-6439/aaf43a
URL
|
[6] |
WARE T, SIMON D, LIU C, et al. Thiol-ene/acrylate substrates for softening intracortical electrodes[J]. Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 2014, 102(1): 1-11.
doi: 10.1002/jbmb.32946
URL
|
[7] |
WARE T, SIMON D, ARREAGA-SALAS D E, et al. Fabrication of responsive, softening neural interfaces[J]. Advanced Functional Materials, 2012, 22(16): 3470-3479.
doi: 10.1002/adfm.201200200
URL
|
[8] |
ZHANG S, WANG C J, GAO H, et al. A removable insertion shuttle for ultraflexible neural probe implantation with stable chronic brain electrophysiological recording[J]. Advanced Materials Interfaces, 2020, 7(6): 1901775.
doi: 10.1002/admi.201901775
URL
|
[9] |
ZHAO Z G, KIM E, LUO H, et al. Flexible deep brain neural probes based on a parylene tube structure[J]. Journal of Micromechanics and Microengineering, 2018, 28(1): 015012.
doi: 10.1088/1361-6439/aa9d61
URL
|
[10] |
JOO H R, FAN J L, CHEN S, et al. A microfabricated, 3D-sharpened silicon shuttle for insertion of flexible electrode arrays through dura mater into brain[J]. Journal of Neural Engineering, 2019, 16(6): 066021.
doi: 10.1088/1741-2552/ab2b2e
URL
|
[11] |
NA K, SPERRY Z J, LU J, et al. Novel diamond shuttle to deliver flexible neural probe with reduced tissue compression[J]. Microsystems & Nanoengineering, 2020, 6: 37.
|
[12] |
LUAN L, WEI X, ZHAO Z, et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration[J]. Science Advances, 2017, 3(2): e1601966.
doi: 10.1126/sciadv.1601966
URL
|
[13] |
ZHAO Z, LI X, HE F, et al. Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays[J]. Journal of Neural Engineering, 2019, 16(3): 035001.
doi: 10.1088/1741-2552/ab05b6
URL
|
[14] |
ZHANG W G, MA Y K, LI Z W. Experimental evaluation of neural probe’s insertion induced injury based on digital image correlation method[J]. Medical Physics, 2016, 43(1): 505-512.
doi: 10.1118/1.4938064
URL
|
[15] |
HARRIS J P, HESS A E, ROWAN S J, et al. In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes[J]. Journal of Neural Engineering, 2011, 8(4): 046010.
doi: 10.1088/1741-2560/8/4/046010
URL
|
[16] |
REZAEI S, XU Y, PANG S W. Control of neural probe shank flexibility by fluidic pressure in embedded microchannel using PDMS/PI hybrid substrate[J]. PLoS One, 2019, 14(7): e0220258.
doi: 10.1371/journal.pone.0220258
URL
|
[17] |
FELIX S H, SHAH K G, TOLOSA V M, et al. Insertion of flexible neural probes using rigid stiffeners attached with biodissolvable adhesive[J]. Journal of Visualized Experiments, 2013(79): e50609.
|
[18] |
ANDREI A, WELKENHUYSEN M, NUTTIN B, et al. A response surface model predicting the in vivo insertion behavior of micromachined neural implants[J]. Journal of Neural Engineering, 2012, 9(1): 016005.
doi: 10.1088/1741-2560/9/1/016005
URL
|
[19] |
黎立云, 刘大安. 中心受压杆安全系数的选取[J]. 力学与实践, 1983, 5(4): 47-49.
|
|
LI Liyun, LIU Da’an. Selection of safety factor of central compression bar[J]. Mechanics and Engineering, 1983, 5(4): 47-49.
|
[20] |
凌伟, 文毅, 殷民. 材料力学[M]. 西安: 西安交通大学出版社, 2014.
|
|
LING Wei, WEN Yi, YIN Min. Mechanics of materials[M]. Xi’an: Xi’an Jiaotong University Press, 2014.
|