[1] |
CLAUSS G F, KOSLECK S, TESTA D. Critical si-tuations of vessel operations in short crested seas: Forecast and decision support system [C]//Proceedings of ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, USA: ASME, 2010: 319-332.
|
[2] |
STREDULINSKY D C, THORNHILL E M. Ship motion and wave radar data fusion for shipboard wave measurement[J]. Journal of Ship Research, 2011, 55(2): 73-85.
doi: 10.5957/jsr.2011.55.2.73
URL
|
[3] |
THORNHILL E M, STREDULINSKY D C. Real time local sea state measurement using wave radar and ship motions[J]. Transactions-Society of Naval Architects and Marine Engineers, 2010, 118: 248-259.
|
[4] |
NIELSEN U D. A concise account of techniques available for shipboard sea state estimation[J]. Ocean Engineering, 2017, 129: 352-362.
doi: 10.1016/j.oceaneng.2016.11.035
URL
|
[5] |
ISEKI T, OHTSU K. Bayesian estimation of directional wave spectra based on ship motions[J]. Control Engineering Practice, 2000, 8(2): 215-219.
doi: 10.1016/S0967-0661(99)00156-2
URL
|
[6] |
ISEKI T. Extended Bayesian estimation of directional wave spectra [C]//Proceedings of ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada: ASME, 2004: 611-616.
|
[7] |
NIELSEN U D. Estimations of on-site directional wave spectra from measured ship responses[J]. Marine Structures, 2006, 19(1): 33-69.
doi: 10.1016/j.marstruc.2006.06.001
URL
|
[8] |
NIELSEN U D. Introducing two hyperparameters in Bayesian estimation of wave spectra[J]. Probabilistic Engineering Mechanics, 2008, 23(1): 84-94.
doi: 10.1016/j.probengmech.2007.10.007
URL
|
[9] |
PASCOAL R, GUEDES SOARES C. Non-parametric wave spectral estimation using vessel motions[J]. Applied Ocean Research, 2008, 30(1): 46-53.
doi: 10.1016/j.apor.2008.03.003
URL
|
[10] |
PASCOAL R, GUEDES SOARES C. Kalman filtering of vessel motions for ocean wave directional spectrum estimation[J]. Ocean Engineering, 2009, 36(6/7): 477-488.
doi: 10.1016/j.oceaneng.2009.01.013
URL
|
[11] |
PASCOAL R, PERERA L P, GUEDES SOARES C. Estimation of directional sea spectra from ship motions in sea trials[J]. Ocean Engineering, 2017, 132: 126-137.
doi: 10.1016/j.oceaneng.2017.01.020
URL
|
[12] |
NIELSEN U D, GALEAZZI R, BRODTKORB A H. Evaluation of shipboard wave estimation techniques through model-scale experiments [C]//OCEANS 2016-Shanghai. Piscataway, NJ, USA: IEEE, 2016: 1-8.
|
[13] |
MAK B, DÜZ B. Ship as a wave buoy: Estimating relative wave direction from in-service ship motion measurements using machine learning [C]//Proceedings of ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Glasgow, UK: ASME, 2019, V009T13A043.
|
[14] |
CHENG X, LI G Y, SKULSTAD R, et al. Modeling and analysis of motion data from dynamically positioned vessels for sea state estimation [C]//2019 International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2019: 6644-6650.
|
[15] |
SIDARTA D E, TCHERNIGUIN N, TAN J H, et al. An ANN-based model to artificially transform a floating vessel into a wave monitoring buoy[DB/OL]. (2020-10-27) [2021-03-22]. https://onepetro.org/OTCASIA/proceedings-abstract/20OTCA/1-20OTCA/450910.
|
[16] |
THIJS H. New C-DRONE-for undisturbed wave spectrum measurements [EB/OL] (2017-12-29) [2021-03-22]. https://www.marinetechnologynews.com/news/drone-undisturbed-spectrum-measurements-555571/.
|
[17] |
戴现令, 娄虎, 阮文涛, 等. 一种水质检测三体船设计及其水阻力计算[J]. 装备制造技术, 2020(5): 31-34.
|
|
DAI Xianling, LOU Hu, RUAN Wentao, et al. Design of a trimaran for water quality detection and calculation of its water resistance[J]. Equipment Manufacturing Technology, 2020(5): 31-34.
|
[18] |
陈雨虹. 基于神经网络的三自由度直升机智能控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
CHEN Yuhong. Research on neural network based intelligent control method for 3-dof helicopters[D]. Harbin: Harbin Institute of Technology, 2019.
|
[19] |
侯海艳, 侯金亮, 黄春林, 等. 基于人工神经网络和AMSR2多频微波亮温的北疆地区雪深反演[J]. 遥感技术与应用, 2018, 33(2): 241-251.
|
|
HOU Haiyan, HOU Jinliang, HUANG Chunlin, et al. Retrieve snow depth of north of Xinjiang region from ARMS2 data based on artificial neural network technology[J]. Remote Sensing Technology and Application, 2018, 33(2): 241-251.
|
[20] |
喻祥尤. 基于深度学习的机器人场景识别研究[D]. 沈阳: 沈阳工业大学, 2017.
|
|
YU Xiangyou. Research on robot scene recognition based on depth learning[D]. Shenyang: Shenyang University of Technology, 2017.
|