Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (4): 498-505.doi: 10.16183/j.cnki.jsjtu.2021.094
• Transportation Engineering • Previous Articles Next Articles
QIN Yichao1, HUANG Limin1(), WANG Xiao2, MA Xuewen1, DUAN Wenyang1, HAO Wei1
Received:
2021-03-23
Online:
2022-04-28
Published:
2022-05-07
Contact:
HUANG Limin
E-mail:huanglimin@hrbeu.edu.cn
CLC Number:
QIN Yichao, HUANG Limin, WANG Xiao, MA Xuewen, DUAN Wenyang, HAO Wei. Feasibility of Wave Measurement by Using a Sailing Buoy and the Artificial Neural Network Technique[J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 498-505.
Tab.3
Heading wave regular wave conditions
编号 | 波长 船长比 | 波长/m | 频率/ (rad·s-1) | 周期/s | 波高/m | 编号 | 波长 船长比 | 波长/m | 频率/ (rad·s-1) | 周期/s | 波高/m |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.1 | 1.133 | 7.376 | 0.852 | 0.0227 | 7 | 2.0 | 2.060 | 5.470 | 1.149 | 0.0412 |
2 | 1.4 | 1.442 | 6.538 | 0.961 | 0.0288 | 8 | 2.1 | 2.163 | 5.338 | 1.177 | 0.0433 |
3 | 1.6 | 1.648 | 6.116 | 1.027 | 0.0330 | 9 | 2.2 | 2.266 | 5.215 | 1.205 | 0.0453 |
4 | 1.7 | 1.751 | 5.933 | 1.059 | 0.0350 | 10 | 2.5 | 2.575 | 4.893 | 1.284 | 0.0515 |
5 | 1.8 | 1.854 | 5.766 | 1.090 | 0.0371 | 11 | 3.0 | 3.090 | 4.466 | 1.407 | 0.0309 |
6 | 1.9 | 1.957 | 5.612 | 1.120 | 0.0391 | 12 | 3.5 | 3.605 | 4.135 | 1.520 | 0.0600 |
[1] | CLAUSS G F, KOSLECK S, TESTA D. Critical si-tuations of vessel operations in short crested seas: Forecast and decision support system [C]//Proceedings of ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, USA: ASME, 2010: 319-332. |
[2] |
STREDULINSKY D C, THORNHILL E M. Ship motion and wave radar data fusion for shipboard wave measurement[J]. Journal of Ship Research, 2011, 55(2): 73-85.
doi: 10.5957/jsr.2011.55.2.73 URL |
[3] | THORNHILL E M, STREDULINSKY D C. Real time local sea state measurement using wave radar and ship motions[J]. Transactions-Society of Naval Architects and Marine Engineers, 2010, 118: 248-259. |
[4] |
NIELSEN U D. A concise account of techniques available for shipboard sea state estimation[J]. Ocean Engineering, 2017, 129: 352-362.
doi: 10.1016/j.oceaneng.2016.11.035 URL |
[5] |
ISEKI T, OHTSU K. Bayesian estimation of directional wave spectra based on ship motions[J]. Control Engineering Practice, 2000, 8(2): 215-219.
doi: 10.1016/S0967-0661(99)00156-2 URL |
[6] | ISEKI T. Extended Bayesian estimation of directional wave spectra [C]//Proceedings of ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, Canada: ASME, 2004: 611-616. |
[7] |
NIELSEN U D. Estimations of on-site directional wave spectra from measured ship responses[J]. Marine Structures, 2006, 19(1): 33-69.
doi: 10.1016/j.marstruc.2006.06.001 URL |
[8] |
NIELSEN U D. Introducing two hyperparameters in Bayesian estimation of wave spectra[J]. Probabilistic Engineering Mechanics, 2008, 23(1): 84-94.
doi: 10.1016/j.probengmech.2007.10.007 URL |
[9] |
PASCOAL R, GUEDES SOARES C. Non-parametric wave spectral estimation using vessel motions[J]. Applied Ocean Research, 2008, 30(1): 46-53.
doi: 10.1016/j.apor.2008.03.003 URL |
[10] |
PASCOAL R, GUEDES SOARES C. Kalman filtering of vessel motions for ocean wave directional spectrum estimation[J]. Ocean Engineering, 2009, 36(6/7): 477-488.
doi: 10.1016/j.oceaneng.2009.01.013 URL |
[11] |
PASCOAL R, PERERA L P, GUEDES SOARES C. Estimation of directional sea spectra from ship motions in sea trials[J]. Ocean Engineering, 2017, 132: 126-137.
doi: 10.1016/j.oceaneng.2017.01.020 URL |
[12] | NIELSEN U D, GALEAZZI R, BRODTKORB A H. Evaluation of shipboard wave estimation techniques through model-scale experiments [C]//OCEANS 2016-Shanghai. Piscataway, NJ, USA: IEEE, 2016: 1-8. |
[13] | MAK B, DÜZ B. Ship as a wave buoy: Estimating relative wave direction from in-service ship motion measurements using machine learning [C]//Proceedings of ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. Glasgow, UK: ASME, 2019, V009T13A043. |
[14] | CHENG X, LI G Y, SKULSTAD R, et al. Modeling and analysis of motion data from dynamically positioned vessels for sea state estimation [C]//2019 International Conference on Robotics and Automation (ICRA). Piscataway, NJ, USA: IEEE, 2019: 6644-6650. |
[15] | SIDARTA D E, TCHERNIGUIN N, TAN J H, et al. An ANN-based model to artificially transform a floating vessel into a wave monitoring buoy[DB/OL]. (2020-10-27) [2021-03-22]. https://onepetro.org/OTCASIA/proceedings-abstract/20OTCA/1-20OTCA/450910. |
[16] | THIJS H. New C-DRONE-for undisturbed wave spectrum measurements [EB/OL] (2017-12-29) [2021-03-22]. https://www.marinetechnologynews.com/news/drone-undisturbed-spectrum-measurements-555571/. |
[17] | 戴现令, 娄虎, 阮文涛, 等. 一种水质检测三体船设计及其水阻力计算[J]. 装备制造技术, 2020(5): 31-34. |
DAI Xianling, LOU Hu, RUAN Wentao, et al. Design of a trimaran for water quality detection and calculation of its water resistance[J]. Equipment Manufacturing Technology, 2020(5): 31-34. | |
[18] | 陈雨虹. 基于神经网络的三自由度直升机智能控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
CHEN Yuhong. Research on neural network based intelligent control method for 3-dof helicopters[D]. Harbin: Harbin Institute of Technology, 2019. | |
[19] | 侯海艳, 侯金亮, 黄春林, 等. 基于人工神经网络和AMSR2多频微波亮温的北疆地区雪深反演[J]. 遥感技术与应用, 2018, 33(2): 241-251. |
HOU Haiyan, HOU Jinliang, HUANG Chunlin, et al. Retrieve snow depth of north of Xinjiang region from ARMS2 data based on artificial neural network technology[J]. Remote Sensing Technology and Application, 2018, 33(2): 241-251. | |
[20] | 喻祥尤. 基于深度学习的机器人场景识别研究[D]. 沈阳: 沈阳工业大学, 2017. |
YU Xiangyou. Research on robot scene recognition based on depth learning[D]. Shenyang: Shenyang University of Technology, 2017. |
[1] | HUANG Ming1,LIU Jun2. Establishment and Analysis of Artificial Neural Network Distributed Model for Sea Wall Osmosis Pressure [J]. Journal of Shanghai Jiaotong University, 2014, 48(11): 1655-1659. |
[2] | 张毅,杨建国. Grey Neural Network Modeling for Machine Tool Thermal Error [J]. Journal of Shanghai Jiaotong University, 2011, 45(11): 1581-1586. |
[3] | PAN Yi-Biao-1, YUAN Jing-Qi-1, ZHU Kai-1, CHEN Yu-2, ZHANG Rui-Feng-2. Online Detection of Abnormal Data Based on Multilayer Perceptron [J]. Journal of Shanghai Jiaotong University, 2011, 45(08): 1226-1229. |
[4] | LI Wei1,HE Qichang1,FAN Xiumin1,2. Detection of Driver’s Fatigue Based on Vehicle Performance Output [J]. Journal of Shanghai Jiaotong University, 2010, 44(02): 292-0296. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 854
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2241
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||