Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (3): 368-378.doi: 10.16183/j.cnki.jsjtu.2020.278
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
WANG Chao, YANG Bo, ZHANG Yuan(), GUO Chunyu, YE Liyu
Received:
2020-09-02
Online:
2022-03-28
Published:
2022-04-01
Contact:
ZHANG Yuan
E-mail:zhangyuan@hrbeu.edu.cn
CLC Number:
WANG Chao, YANG Bo, ZHANG Yuan, GUO Chunyu, YE Liyu. Numerical Simulation and Analysis of Cylindrical Ice Impacting Problem[J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 368-378.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.278
[1] | KEUNE J. Development of a hail ice impact model and the dynamic compressive strength properties of ice[D]. West Lafayette, USA: Purdue University, 2004. |
[2] | KIM H, KEDWARD K T. Modeling hail ice impacts and predicting impact damage initiation in composite structures[J]. AIAA Journal, 2000, 38(7):1278-1288. |
[3] | PARK H, KIM H. Damage resistance of single lap adhesive composite joints by transverse ice impact[J]. International Journal of Impact Engineering, 2010, 37(2):177-184. |
[4] | TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation[J]. International Journal of Impact Engineering, 2013, 57:43-54. |
[5] | GUO C Y, ZHANG Z T, TIAN T P, et al. Numerical simulation on the resistance performance of ice-going container ship under brash ice conditions[J]. China Ocean Engineering, 2018, 32(5):546-556. |
[6] | XU Y, HU Z, RINGSBERG J et al. An ice material model addressing the influence of strain rate, temperature, confining pressure and porosity[C]//Proceedings of the 7th International Conference on Marine Structures (MARSTRUCT). Dubrovnik, Croatia: CRC Press, 2019. |
[7] | XU Y, HU Z Q, RINGSBERG J W, et al. Nonli-near viscoelastic-plastic material modelling for the behaviour of ice in ice-structure interactions[J]. Ocean Engineering, 2019, 173:284-297. |
[8] | 王峰. 基于粘聚单元模型的海洋结构物与平整冰相互作用数值研究[D]. 上海: 上海交通大学, 2019. |
WANG Feng. Numerical research on the interactions between marine structures and level ice based on cohesive element model[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
[9] | 王峰, 邹早建, 任奕舟. 基于粘聚单元模型的平整冰-竖直圆柱体碰撞数值模拟[J]. 振动与冲击, 2019, 38(16):153-158. |
WANG Feng, ZOU Zaojian, REN Yizhou. Numerical simulation of level ice-vertical cylinder collision based on a cohesive element model[J]. Journal of Vibration and Shock, 2019, 38(16):153-158. | |
[10] | MINTU S, MOLYNEUX D. Simulation of ice-structure interactions using a coupled SPH-DEM method[C]//OTC Arctic Technology Conference. Houston, Texas, USA: OTC Press, 2018. |
[11] | SONG Y, YU H C, KANG Z. Numerical study on ice fragmentation by impact based on non-ordinary state-based peridynamics[J]. Journal of Micromechanics and Molecular Physics, 2019, 4(1):1850006. |
[12] | JAVILI A, MORASATA R, OTERKUS E, et al. Peridynamics review[J]. Mathematics and Mechanics of Solids, 2019, 24(11):3714-3739. |
[13] | SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1):175-209. |
[14] | NGUYEN C T, OTERKUS S. Ordinary state-based peridynamic model for geometrically nonlinear analysis[J]. Engineering Fracture Mechanics, 2020, 224:106750. |
[15] | DIYAROGLU C. Peridynamics and its applications in marine structures[D]. Glasgow, United Kingdom: University of Strathclyde, 2016. |
[16] | DIEHL P, PRUDHOMME S, LÉVESQUE M. A review of benchmark experiments for the validation of peridynamics models[J]. Journal of Peridynamics and Nonlocal Modeling, 2019, 1(1):14-35. |
[17] | BOBARU F, FOSTER J T, GEUBELLE P H, et al. Handbook of peridynamic modeling[M]. New York, USA: Chapman and Hall/CRC, 2015. |
[18] | YE L Y, GUO C Y, WANG C, et al. Peridynamic solution for submarine surfacing through ice[J]. Ships and Offshore Structures, 2020, 15(5):535-549. |
[19] | LIU M H, WANG Q, LU W. Peridynamic simulation of brittle-ice crushed by a vertical structure[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(2):209-218. |
[20] | ASGARI M, KOUCHAKZADEH M A. An equivalent von Mises stress and corresponding equivalent plastic strain for elastic-plastic ordinary peridynamics[J]. Meccanica, 2019, 54(7):1001-1014. |
[21] | YE L Y, WANG C, CHANG X, et al. Propeller-ice contact modeling with peridynamics[J]. Ocean Engineering, 2017, 139:54-64. |
[22] | MADENCI E, OTERKUS E. Peridynamic theory[M]. New York, USA: Springer, 2013. |
[23] | LITTLEWOOD D J. Roadmap for peridynamic software implementation[M]. New York, USA: Chapman and Hall/CRC, 2015. |
[24] | GAO Y, OTERKUS S. Ordinary state-based peridynamic modelling for fully coupled thermoelastic problems[J]. Continuum Mechanics and Thermodynamics, 2019, 31(4):907-937. |
[25] | WANG Q, WANG Y, ZAN Y F, et al. Peridynamics simulation of the fragmentation of ice cover by blast loads of an underwater explosion[J]. Journal of Marine Science and Technology, 2018, 23(1):52-66. |
[26] | MADENCI E, OTERKUS S. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening[J]. Journal of the Mechanics and Physics of Solids, 2016, 86:192-219. |
[27] | CARNEY K S, BENSON D J, DUBOIS P, et al. A phenomenological high strain rate model with failure for ice[J]. International Journal of Solids and Structures, 2006, 43(25/26):7820-7839. |
[28] | WEEKS W, ASSUR A. The mechanical properties of sea ice[J]. Journal of Energy Resources Technology, 1967, 101(3):196-202. |
[29] | TIMCO G W, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology, 2010, 60(2):107-129. |
[1] | DING Kewei, LIU Jianhua, REN Jianwei, MA Wei . Dynamic Responses of Cellular Metal-Filled Steel Beam-Column Joint Under Impact Loading [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 384-393. |
[2] | HU Jun *(胡俊), REN Jianwei (任建伟), WU Deyi (吴德义). Dynamic Mechanical Properties of EPS Concrete Under Impact Loading [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 94-100. |
[3] | LIU Jian-cheng, GUO Ying-hao, XIAO Long-fei, TENG Xiao-qing, WANG Jin-guang, XU Li-xin, LU Hai-dong. An Experimental Study of Wave Impact Loads on a Drilling Semi-Submersible Platform [J]. Ocean Engineering Equipment and Technology, 2018, 5(增刊): 234-237. |
[4] | XU Feng, RUAN Sheng-fu, HU Yong-ming, JIN Bao-wang, TIAN Wei-xing. Study on Calculation Method for Jacket Docking with Subsea Template Guide [J]. Ocean Engineering Equipment and Technology, 2018, 5(3): 191-196. |
[5] | FU Li1* (傅莉), LIN Li-ping1 (林丽平), XU Xin-he2 (徐心和). Research on Modeling and Fuzzy Control of Magneto-Rheological Intelligent Buffer System for Impact Load [J]. Journal of shanghai Jiaotong University (Science), 2012, 17(5): 567-572. |
[6] | XIANG Guo-wei, YE Guan-lin, WANG Jian-hua. Experimental Investigation on Propagation of Impact Load Induced Vibration in Sandy Soil [J]. Journal of Shanghai Jiao Tong University, 2012, 46(01): 136-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||