Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (10): 1255-1262.doi: 10.16183/j.cnki.jsjtu.2020.157
Special Issue: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“机械工程”专题
Previous Articles Next Articles
ZHUO Pengcheng, YAN Jin, ZHENG Meimei, XIA Tangbin(), XI Lifeng
Received:
2020-06-01
Online:
2021-10-28
Published:
2021-11-01
Contact:
XIA Tangbin
E-mail:xtbxtb@sjtu.edu.cn
CLC Number:
ZHUO Pengcheng, YAN Jin, ZHENG Meimei, XIA Tangbin, XI Lifeng. GA-OIHF Elman Neural Network Algorithm for Fault Diagnosis of Full Life Cycle of Rolling Bearing[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1255-1262.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.157
Tab.3
MSE of full life cycle fault diagnosis of GA-OIHF Elman neural network model
故障状态与 故障部件 | 神经网络类型 | |
---|---|---|
正常 | OIHF Elman | 3.21×10-14 |
GA-OIHF Elman | 0.0087 | |
轻度退化 | OIHF Elman | 0.0022 |
GA-OIHF Elman | 0.0043 | |
中度退化 | OIHF Elman | 0.0316 |
GA-OIHF Elman | 0.0186 | |
重度退化 | OIHF Elman | 0.0069 |
GA-OIHF Elman | 0.0036 | |
滚动体 | OIHF Elman | 0.0061 |
GA-OIHF Elman | 0.0079 | |
内圈 | OIHF Elman | 0.0113 |
GA-OIHF Elman | 0.0039 | |
外圈 | OIHF Elman | 0.0270 |
GA-OIHF Elman | 0.0164 |
[1] |
HUANG W T, SUN H J, LUO J N, et al. Periodic feature oriented adapted dictionary free OMP for rolling element bearing incipient fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 126:137-160.
doi: 10.1016/j.ymssp.2019.02.023 URL |
[2] |
XIA T B, DONG Y F, XIAO L, et al. Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering & System Safety, 2018, 178:255-268.
doi: 10.1016/j.ress.2018.06.021 URL |
[3] |
XIA T B, SONG Y, ZHENG Y, et al. An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115:103182.
doi: 10.1016/j.compind.2019.103182 URL |
[4] |
SAARI J, STRÖMBERGSSON D, LUNDBERG J, et al. Detection and identification of windmill bearing faults using a one-class support vector machine (SVM)[J]. Measurement, 2019, 137:287-301.
doi: 10.1016/j.measurement.2019.01.020 URL |
[5] | 陈玉昇, 杨燕华, 林萌, 等. 基于深度学习神经网络的核电厂故障诊断技术[J]. 上海交通大学学报, 2018, 52(Sup.1):58-61. |
CHEN Yusheng, YANG Yanhua, LIN Meng, et al. Fault diagnosis technology of nuclear power plant based on deep learning neural network[J]. Journal of Shanghai Jiao Tong University, 2018, 52(Sup.1):58-61. | |
[6] |
BEN ALI J, FNAIECH N, SAIDI L, et al. Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[J]. Applied Acoustics, 2015, 89:16-27.
doi: 10.1016/j.apacoust.2014.08.016 URL |
[7] |
LI L, HUANG Y X, TAO J F, et al. Featured temporal segmentation method and AdaBoost-BP detector for internal leakage evaluation of a hydraulic cylinder[J]. Measurement, 2018, 130:279-289.
doi: 10.1016/j.measurement.2018.08.029 URL |
[8] | 汤宝平, 习建民, 李锋. 基于Elman神经网络的旋转机械故障诊断[J]. 计算机集成制造系统, 2010, 16(10):2148-2152. |
TANG Baoping, XI Jianmin, LI Feng. Fault diagnosis for rotating machinery based on Elman neural network[J]. Computer Integrated Manufacturing Systems, 2010, 16(10):2148-2152. | |
[9] |
SHI X H, LIANG Y C, LEE H P, et al. Improved Elman networks and applications for controlling ultrasonic motors[J]. Applied Artificial Intelligence, 2004, 18(7):603-629.
doi: 10.1080/08839510490483279 URL |
[10] |
ZHENG K, YANG D W, ZHANG B, et al. A group sparse representation method in frequency domain with adaptive parameters optimization of detecting incipient rolling bearing fault[J]. Journal of Sound and Vibration, 2019, 462:114931.
doi: 10.1016/j.jsv.2019.114931 URL |
[11] |
LEI Y G, QIAO Z J, XU X F, et al. An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 94:148-164.
doi: 10.1016/j.ymssp.2017.02.041 URL |
[12] |
LI H, LIU T, WU X, et al. Application of EEMD and improved frequency band entropy in bearing fault feature extraction[J]. ISA Transactions, 2019, 88:170-185.
doi: 10.1016/j.isatra.2018.12.002 URL |
[13] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995.
doi: 10.1098/rspa.1998.0193 URL |
[14] |
WANG Z W, ZHANG Q H, XIONG J B, et al. Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests[J]. IEEE Sensors Journal, 2017, 17(17):5581-5588.
doi: 10.1109/JSEN.2017.2726011 URL |
[15] |
AMIRAT Y, BENBOUZID M E H, WANG T, et al. EEMD-based notch filter for induction machine bearing faults detection[J]. Applied Acoustics, 2018, 133:202-209.
doi: 10.1016/j.apacoust.2017.12.030 URL |
[16] | 刘涛, 杜世昌, 黄德林, 等. 基于改进的集合经验模态方法振动信号分解[J]. 上海交通大学学报, 2016, 50(9):1452-1459. |
LIU Tao, DU Shichang, HUANG Delin, et al. Vibration signal decomposition based on an improved ensemble empirical mode decomposition method[J]. Journal of Shanghai Jiao Tong University, 2016, 50(9):1452-1459. | |
[17] |
FU Q, JING B, HE P J, et al. Fault feature selection and diagnosis of rolling bearings based on EEMD and optimized Elman_AdaBoost algorithm[J]. IEEE Sensors Journal, 2018, 18(12):5024-5034.
doi: 10.1109/JSEN.2018.2830109 URL |
[18] |
GUO H X, LI Y J, LI Y N, et al. BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification[J]. Engineering Applications of Artificial Intelligence, 2016, 49:176-193.
doi: 10.1016/j.engappai.2015.09.011 URL |
[19] |
LIU H, TIAN H Q, LIANG X F, et al. New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, Mind Evolutionary Algorithm and Artificial Neural Networks[J]. Renewable Energy, 2015, 83:1066-1075.
doi: 10.1016/j.renene.2015.06.004 URL |
[1] | YAN Qing, LU Jiansha, JIANG Weiguang, SHAO Yiping, TANG Hongtao, LI Yingde. Path Optimization of Stacker in Compact Storage System with Dual-Port Layout [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 858-867. |
[2] | ZHOU Tianyan, FENG Xiaoen, FAN Yunfeng, DONG Shiyin, LI Yuqing, JIN Huizhong. Optimization Model of Ground Air Defense Force Deployment to Avoid Excessive Air Defense Firepower [J]. Air & Space Defense, 2022, 5(4): 19-23. |
[3] | WANG Xiaojian, HONG Jun, CHEN Jinghua, LI Hongguang. Weight Reduction Study of Box Structure Based on Parametric Modeling and Response Surface Optimization [J]. Air & Space Defense, 2022, 5(4): 60-66. |
[4] | LIU Jiea (刘 洁), ZHANG Baojib∗ (张宝吉). Multiobjective Optimization of Hull Form Based on Global Optimization Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 346-355. |
[5] | WANG Zhuoxin, ZHAO Haitao, XIE Yuehan, REN Hantao, YUAN Mingqing, ZHANG Boming, CHEN Ji’an. Prediction of Modulus of Composite Materials by BP Neural Network Optimized by Genetic Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1341-1348. |
[6] | ZHOU Yutai, XU Yue, LI Yu, JIANG Guotao. Genetic Algorithm Based Method of Optimal Deployment for Three-Dimensional Radar Networks Under Jamming Situation [J]. Air & Space Defense, 2022, 5(1): 52-59. |
[7] | LI Cuiming, WANG Ning, ZHANG Chen. Hierarchical Mission Planning for Cleaning Photovoltaic Panels Based on Improved Genetic Algorithm [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1169-1174. |
[8] | JIN Yudong (靳宇栋), FENG Jiabo (冯家波), ZHANG Weijun (张伟军). UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 431-445. |
[9] | GU Yifan, ZHAO Wenlong, TANG Shanjun, YANG Qingyu, ZHENG Xin. Research on Target Spatial Collaborative Positioning Methods for Distributed Active/Passive Imaging Detection System [J]. Air & Space Defense, 2021, 4(4): 119-126. |
[10] | WANG Jinfeng, CHEN Lu, YANG Wenhui. A Single Machine Scheduling Problem Considering Machine Availability Constraints [J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 103-110. |
[11] | ZHAO Chaowang (赵朝望), YANG Jian (杨健), XIONG Wuyue (熊吴越), LI Jiatong (李佳潼). Two Generative Design Methods of Hospital Operating Department Layouts Based on Healthcare Systematic Layout Planning and Generative Adversarial Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 103-115. |
[12] | NIU Zhihua, YUAN Can, KONG Deyu. A Hybrid Genetic Algorithm for Computing the k-Error Linear Complexity of Periodic Sequences [J]. Journal of Shanghai Jiaotong University, 2020, 54(6): 599-606. |
[13] | KANG Juntao, ZHANG Yazhou, QIN Shiqiang. A Hybrid Evolutionary Algorithm for Identifying Multiple Alternatives in Model Updating [J]. Journal of Shanghai Jiaotong University, 2020, 54(6): 652-660. |
[14] | LI Zibo, ZENG Fan, ZHAO Zhen, HU Chengliang. Optimized Design for a Combined Die with Two Stress Rings in Cold Forging Considering Thermal-Mechanical Effects [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 304-314. |
[15] | YAO Laipeng, HOU Baolin, LIU Xi. Adaptive Terminal Sliding Mode Control of a Howitzer Shell Transfer Arm with Friction Compensation [J]. Journal of Shanghai Jiaotong University, 2020, 54(2): 144-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||