Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (5): 557-565.doi: 10.16183/j.cnki.jsjtu.2019.264
Special Issue: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“自动化技术、计算机技术”专题
Previous Articles Next Articles
HE Xinlin1, QI Zongfeng2, LI Jianxun1()
Received:
2019-09-16
Online:
2021-05-28
Published:
2021-06-01
Contact:
LI Jianxun
E-mail:lijx@sjtu.edu.cn
CLC Number:
HE Xinlin, QI Zongfeng, LI Jianxun. Unbalanced Learning of Generative Adversarial Network Based on Latent Posterior[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 557-565.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.264
Tab.2
Metrics of decision tree classifier based on data oversampling
指标 | 数据集 | 原始数据 | ROS | SMOTE | Border | MWMOTE | ADASYN | LGOS |
---|---|---|---|---|---|---|---|---|
Recall | phoneme | 0.7566 | 0.7396 | 0.7953 | 0.7976 | 0.8023 | 0.8046 | 0.8433 |
satimage | 0.9146 | 0.9365 | 0.9414 | 0.9268 | 0.9512 | 0.9524 | 0.9634 | |
pen | 0.9583 | 0.9819 | 0.9814 | 0.9814 | 0.9856 | 0.9625 | 0.9861 | |
wine | 0.6000 | 0.5627 | 0.6511 | 0.6188 | 0.6533 | 0.6583 | 0.6944 | |
letter | 0.9016 | 0.8759 | 0.8983 | 0.8769 | 0.9037 | 0.8586 | 0.9118 | |
avila | 0.9357 | 0.9394 | 0.9564 | 0.9784 | 0.9422 | 0.9697 | 0.9816 | |
F-measure | phoneme | 0.7479 | 0.7394 | 0.7528 | 0.7602 | 0.7627 | 0.7564 | 0.7586 |
satimage | 0.9146 | 0.9411 | 0.9374 | 0.9319 | 0.9414 | 0.9398 | 0.9461 | |
pen | 0.9430 | 0.9718 | 0.9586 | 0.9676 | 0.9755 | 0.9563 | 0.9681 | |
wine | 0.6084 | 0.5885 | 0.5759 | 0.5605 | 0.5945 | 0.5722 | 0.5966 | |
letter | 0.8721 | 0.8898 | 0.8646 | 0.8571 | 0.8772 | 0.8519 | 0.8936 | |
avila | 0.9400 | 0.9483 | 0.9411 | 0.9576 | 0.9280 | 0.9538 | 0.9511 | |
G-mean | phoneme | 0.8241 | 0.8157 | 0.8356 | 0.8398 | 0.8422 | 0.8394 | 0.8486 |
satimage | 0.9521 | 0.9650 | 0.9669 | 0.9596 | 0.9718 | 0.9721 | 0.9778 | |
pen | 0.9749 | 0.9888 | 0.9871 | 0.9881 | 0.9908 | 0.9783 | 0.9902 | |
wine | 0.7510 | 0.7286 | 0.7661 | 0.7483 | 0.7720 | 0.7681 | 0.7897 | |
letter | 0.9432 | 0.9324 | 0.9409 | 0.9301 | 0.9446 | 0.9207 | 0.9500 | |
avila | 0.9642 | 0.9668 | 0.9735 | 0.9853 | 0.9656 | 0.9810 | 0.9859 | |
AUC | phoneme | 0.8271 | 0.8197 | 0.8366 | 0.8410 | 0.8432 | 0.8402 | 0.8486 |
satimage | 0.9529 | 0.9655 | 0.9673 | 0.9602 | 0.9720 | 0.9724 | 0.9779 | |
pen | 0.9751 | 0.9888 | 0.9871 | 0.9881 | 0.9909 | 0.9785 | 0.9902 | |
wine | 0.7700 | 0.7533 | 0.7765 | 0.7621 | 0.7829 | 0.7775 | 0.7963 | |
letter | 0.9442 | 0.9342 | 0.9419 | 0.9317 | 0.9456 | 0.9230 | 0.9508 | |
avila | 0.9646 | 0.9672 | 0.9737 | 0.9854 | 0.9659 | 0.9811 | 0.9860 |
Tab.3
Metrics of transfer learning classifier based on data oversampling
指标 | 数据集 | ROS | SMOTE | Border | MWMOTE | ADASYN | TrAdaboost | LGOS |
---|---|---|---|---|---|---|---|---|
Recall | phoneme | 0.8266 | 0.8333 | 0.8466 | 0.8400 | 0.8500 | 0.8433 | 0.8633 |
satimage | 0.9512 | 0.9390 | 0.9390 | 0.9512 | 0.9634 | 0.9512 | 0.9756 | |
pen | 1.0000 | 1.0000 | 0.9907 | 0.9953 | 1.0000 | 0.9953 | 1.0000 | |
wine | 0.5166 | 0.6166 | 0.6277 | 0.6388 | 0.5944 | 0.6944 | 0.7722 | |
letter | 0.9152 | 0.9186 | 0.9152 | 0.9220 | 0.9322 | 0.9220 | 0.9491 | |
avila | 0.9862 | 0.9862 | 0.9862 | 0.9954 | 0.9862 | 0.9954 | 1.0000 | |
F-measure | phoneme | 0.8378 | 0.8361 | 0.8396 | 0.84 | 0.8388 | 0.8281 | 0.8477 |
satimage | 0.9512 | 0.9565 | 0.9506 | 0.9512 | 0.9634 | 0.9512 | 0.9696 | |
pen | 0.9953 | 0.9976 | 0.9930 | 0.9976 | 0.9953 | 0.9976 | 1.0000 | |
wine | 0.5942 | 0.6646 | 0.6420 | 0.6301 | 0.6114 | 0.5868 | 0.6698 | |
letter | 0.9540 | 0.9559 | 0.9523 | 0.9560 | 0.9649 | 0.9560 | 0.9705 | |
avila | 0.9930 | 0.9907 | 0.9930 | 0.9954 | 0.9907 | 0.9954 | 1.0000 | |
G-mean | phoneme | 0.8832 | 0.8843 | 0.8895 | 0.8879 | 0.8901 | 0.8835 | 0.8976 |
satimage | 0.9728 | 0.9678 | 0.9672 | 0.9728 | 0.9797 | 0.9728 | 0.9858 | |
pen | 0.9994 | 0.9997 | 0.9951 | 0.9976 | 0.9994 | 0.9976 | 1.0000 | |
wine | 0.7058 | 0.7700 | 0.7711 | 0.7739 | 0.7490 | 0.7870 | 0.8402 | |
letter | 0.9565 | 0.9583 | 0.9564 | 0.9599 | 0.9655 | 0.9599 | 0.9739 | |
avila | 0.9930 | 0.9928 | 0.9930 | 0.9974 | 0.9928 | 0.9974 | 1.0000 | |
AUC | phoneme | 0.8851 | 0.8859 | 0.8906 | 0.8892 | 0.8910 | 0.8845 | 0.8983 |
satimage | 0.9731 | 0.9682 | 0.9676 | 0.9731 | 0.9798 | 0.9731 | 0.9859 | |
pen | 0.9994 | 0.9997 | 0.9951 | 0.9976 | 0.9994 | 0.9976 | 1.0000 | |
wine | 0.7404 | 0.7891 | 0.7875 | 0.7881 | 0.7690 | 0.7932 | 0.8432 | |
letter | 0.9574 | 0.9591 | 0.9573 | 0.9607 | 0.9661 | 0.9607 | 0.9743 | |
avila | 0.9931 | 0.9928 | 0.9931 | 0.9974 | 0.9928 | 0.9974 | 1.0000 |
[1] | FOTOUHI S, ASADI S, KATTAN M W. A comprehensive data level analysis for cancer diagnosis on imbalanced data[J]. Journal of Biomedical Informa-tics, 2019, 90:103089. |
[2] |
NAMVAR A, SIAMI M, RABHI F, et al. Credit risk prediction in an imbalanced social lending environment[J]. International Journal of Computational Intelligence Systems, 2018, 11(1):925-935.
doi: 10.2991/ijcis.11.1.70 URL |
[3] |
SOLEYMANI R, GRANGER E, FUMERA G. Progressive boosting for class imbalance and its application to face re-identification[J]. Expert Systems With Applications, 2018, 101:271-291.
doi: 10.1016/j.eswa.2018.01.023 URL |
[4] |
LEE T, LEE K B, KIM C O. Performance of machine learning algorithms for class-imbalanced process fault detection problems[J]. IEEE Transactions on Semiconductor Manufacturing, 2016, 29(4):436-445.
doi: 10.1109/TSM.2016.2602226 URL |
[5] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16:321-357.
doi: 10.1613/jair.953 URL |
[6] | HAN H, WANG W Y, MAO B H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning [C]//International Conference on Intelligent Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 878-887. |
[7] | HE H B, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning [C]//2008 IEEE International Joint Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 2008: 1322-1328. |
[8] |
BARUA S, ISLAM M M, YAO X, et al. MWMOTE: Majority weighted minority oversampling technique for imbalanced data set learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2):405-425.
doi: 10.1109/TKDE.2012.232 URL |
[9] |
DOUZAS G, BACAO F. Effective data generation for imbalanced learning using conditional generative adversarial networks[J]. Expert Systems With Applications, 2018, 91:464-471.
doi: 10.1016/j.eswa.2017.09.030 URL |
[10] |
HE H B, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1263-1284.
doi: 10.1109/TKDE.2008.239 URL |
[11] |
SUN Y M, KAMEL M S, WONG A K C, et al. Cost-sensitive boosting for classification of imba-lanced data[J]. Pattern Recognition, 2007, 40(12):3358-3378.
doi: 10.1016/j.patcog.2007.04.009 URL |
[12] | CHAWLA N V, LAZAREVIC A, HALL L O, et al. SMOTEBoost: Improving prediction of the minority class in boosting [C]//European Conference on Principles of Data Mining and Knowledge Discovery. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 107-119. |
[13] |
CHEN S, HE H B, GARCIA E A. RAMOBoost: Ranked minority oversampling in boosting[J]. IEEE Transactions on Neural Networks, 2010, 21(10):1624-1642.
doi: 10.1109/TNN.2010.2066988 URL |
[14] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]//2017 IEEE International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2017: 2242-2251. |
[15] |
ZHANG H, XU T, LI H S, et al. StackGAN: Realistic image synjournal with stacked generative adversarial networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8):1947-1962.
doi: 10.1109/TPAMI.34 URL |
[16] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. Cambridge, MA, USA: MIT Press, 2014: 2672-2680. |
[17] |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2):199-210.
doi: 10.1109/TNN.2010.2091281 URL |
[18] | LONG M S, WANG J M, DING G G, et al. Transfer feature learning with joint distribution adaptation [C]//2013 IEEE International Conference on Computer Vision. Piscataway, NJ, USA: IEEE, 2013: 2200-2207. |
[19] | LONG M S, ZHU H, WANG J M, et al. Deep transfer learning with joint adaptation networks [C]//ICML'17: Proceedings of the 34th International Conference on Machine Learning-Volume 70. New York, NY, USA: ACM, 2017: 2208-2217. |
[20] | DAI W Y, YANG Q, XUE G R, et al. Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine Learning-ICML '07. New York: ACM Press, 2007: 193-200. |
[21] | 王胜涛. 基于迁移过采样的类别不平衡学习算法研究[D]. 南京: 东南大学, 2017. |
WANG Shengtao. Research on transfer-sampling based method for class-imbalance learning[D]. Nanjing: Southeast University, 2017. | |
[22] | 么素素, 王宝亮, 侯永宏. 绝对不平衡样本分类的集成迁移学习算法[J]. 计算机科学与探索, 2018, 12(7):1145-1153. |
YAO Susu, WANG Baoliang, HOU Yonghong. Ensemble transfer learning algorithm for absolute imbalanced data classification[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(7):1145-1153. |
[1] | LIU Min (刘 敏), YI Ming (易 鸣), WU Minghu∗ (武明虎), WANG Juan (王 娟), HE Yu (何 宇). Breast Pathological Image Classification Based on VGG16 Feature Concatenation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 473-484. |
[2] | LI Yu, YANG Daoyong, LIU Lingya, WANG Yiyin. Underwater Image Enhancement Based on Generative Adversarial Networks [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 134-142. |
[3] | BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[4] | YU Qing (余青), MA Yi (马祎), LI Yongfu∗ (李永福). Enhancing Speech Recognition for Parkinson’s Disease Patient Using Transfer Learning Technique [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 90-98. |
[5] | SHEN Hui, LIU Shimin, XU Minjun, HUANG Delin, BAO Jingsong, ZHENG Xiaohu. Adaptive Transferring Method of Digital Twin Model for Machining Domain [J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 70-80. |
[6] | WANG Yuexing, WU Yongguo, XU Chuangang. Infrared Ship Target Detection Algorithm Based on Deep Transfer Learning [J]. Air & Space Defense, 2021, 4(4): 61-66. |
[7] | QI Shengyong, ZANG Yuejin, LYU Guoyun, DU Ming. Research on Air Target Image Generation Algorithm Based on Generative Adversarial Networks [J]. Air & Space Defense, 2021, 4(2): 67-. |
[8] | JIANG Yudi, HU Hui, YIN Yuehong. Unsupervised Transfer Learning for Remaining Useful Life Prediction of Elevator Brake [J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1408-1416. |
[9] | ZHAO Chaowang (赵朝望), YANG Jian (杨健), XIONG Wuyue (熊吴越), LI Jiatong (李佳潼). Two Generative Design Methods of Hospital Operating Department Layouts Based on Healthcare Systematic Layout Planning and Generative Adversarial Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 103-115. |
[10] | ZHONG Haowen (钟昊文), WANG Chao (王超), TUO Hongya (庹红娅), HU Jian (胡健), QIAO Lingfeng (乔凌峰), JING Zhongliang (敬忠良). Transfer Learning Based on Joint Feature Matching and Adversarial Networks [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 699-705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||