[1]MANDELBROT B B, VAN NESS J W. Fractional Brownian motions, fractional noises and applications[J]. SIAM Review, 1968, 10(4): 422-437.
[2]MEAD L R. Approximate solution of Fredholm integral equations by the maximum-entropy method[J]. Journal of Mathematical Physics, 1986, 27(12): 2903-2907.
[3]SHAO Y. The fractional Ornstein-Uhlenbeck process as a representation of homogeneous Eulerian velocity turbulence[J]. Physica D: Nonlinear Phenomena, 1995, 83(4): 461-477.
[4]ZENG C, CHEN Y Q, YANG Q. The fBm-driven Ornstein-Uhlenbeck process: Probability density function and anomalous diffusion[J]. Fractional Calculus and Applied Analysis, 2012, 15(3): 479-492.
[5]RASCANU A. Differential equations driven by fractional Brownian motion[J]. Collectanea Mathematica, 2002, 53(1): 55-81.
[6]NUPRKOV J. Weak solutions to stochastic differential equations driven by fractional Brownian motion[J]. Czechoslovak Mathematical Journal, 2009, 59(4): 879-907.
[7]CAITHAMER P, KARCZEWSKA A. Convolution-type stochastic Volterra equations with additive fractional Brownian motion in Hilbert space[J]. arXiv Preprint Math, 2006(online first): 0611832.
[8]KULLBACK S. Information theory and statistics[M]. Courier Corporation, 1997.
[9]HU Y, PENG S. Backward stochastic differential equation driven by fractional Brownian motion[J]. SIAM Journal on Control and Optimization, 2009, 48(3): 1675-1700.
[10]JING S, LEN J A. Semilinear backward doubly stochastic differential equations and SPDEs driven by fractional Brownian motion with Hurst parameter in (0, 1/2)[J]. Bulletin des Sciences Mathematiques, 2011, 135(8): 896-935.
[11]BIAGINI F, KSENDAL B, SULEM A, et al. An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion[C]∥Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. London: The Royal Society, 2004, 460(2041): 347-372.
[12]刘韶跃. 数学金融的分数次 Black-Scholes 模型及应用[D]. 长沙: 湖南师范大学数学与计算机科学学院, 2004.
[13]BAKER-JARVIS J, SCHULTZ D, ALAMENDINE J. Approximating solutions to linear and nonlinear differential equations by the method of maximum entropy[J]. Numerical Methods for Partial Differential Equations, 1989, 5(2): 133-142.
[14]DUNCAN T E, HU Y, PASIK-DUNCAN B. Stochastic calculus for fractional Brownian motion I. Theory[J/OL]. SIAM Journal on Control and Optimization, 2000, 38(2): 582-612.
[15]EL-WAKIL S A, ABULWAFA E M, ABDOU M A, et al. Maximum-entropy approach with higher moments for solving Fokker-Planck equation[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 315(3): 480-492.
[16]EL-WAKIL S A, ELHANBALY A, ABDOU M A. Solution of Fokker-Planck equation by means of maximum entropy approach[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 69(1): 41-48.
[17]GARTH J C. Maximum entropy for solving Fokker Planck for electron transport[J]. Transactions of the American Nuclear Society, 1996, 74: 1.
[18]JUMARIE G. A Fokker-Planck equation of fractional order with respect to time[J]. Journal of Mathematical Physics, 1992, 33(10): 3536-3542.
[19]LUCIA U. Entropy generation and cell growth with comments for a thermodynamic anticancer approach[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 406: 107-118.
[20]ZELLNER A, HIGHFIELD R A. Calculation of maximum entropy distributions and approximation of marginalposterior distributions[J]. Journal of Econometrics, 1988, 37(2): 195-209.
[21]LUCIA U. Entropy generation and the Fokker-Planck equation[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 393: 256-260.
[22]MEAD L R, PAPANICOLAOU N. Maximum entropy in the problem of moments[J]. Journal of Mathematical Physics, 1984, 25(8): 2404-2417. |