Journal of Shanghai Jiaotong University ›› 2017, Vol. 51 ›› Issue (12): 1456-1463.doi: 10.16183/j.cnki.jsjtu.2017.12.008
Previous Articles Next Articles
JIAO Xuejun,ZHANG Zhen,JIANG Jin,WANG Chunhui,YANG Hanjun,XU Fenggang,CAO Yong,FU Jiahao
Online:
2017-11-30
Published:
2017-11-30
CLC Number:
JIAO Xuejun,ZHANG Zhen,JIANG Jin,WANG Chunhui,YANG Hanjun,XU Fenggang,CAO Yong,FU Jiahao. The Brain-Computer Interface Using Functional Near-Infrared Spectroscopy[J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1456-1463.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2017.12.008
[1]ASENSIO-CUBERO J, GAN J Q, PALANIAPPAN R. Multiresolution analysis over graphs for a motor imagery based online BCI game[J]. Computers in Biology & Medicine, 2016, 68: 21-26. [2]XU M, QI H, WAN B, et al. A hybrid BCI speller paradigm combining P300 potential and SSVEP blocking feature[J]. Journal of Neural Engineering, 2013, 10(2): 26001-26013. [3]LOTTE F, FALLER J, GUGER C, et al. Combining BCI with virtual reality: Towards new applications and improved BCI[M]. Berlin: Springer Berlin Heidelberg, 2012: 197-220. [4]TUMANOV K, GOEBEL R, MCKEL R, et al. fNIRS-based BCI for robot control[C]∥Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. Istanbul: International Foundation for Autonomous Agents and Multiagent Systems, 2015: 1953-1954. [5]PICHIORRI F, MORONE G, PETTI M, et al. Brain-computer interface boosts motor imagery practice during stroke recovery[J]. Annals of Neurology, 2015, 77(5): 851-865. [6]BAMDAD M, ZARSHENAS H, AUAIS M A. Application of BCI systems in neurorehabilitation: A scoping review[J]. Disability & Rehabilitation Assistive Technology, 2015, 10(5): 1-10. [7]GAUME A, ABBASI M A, DREYFUS G, et al. Towards cognitive BCI: Neural correlates of sustained attention in a continuous performance task[C]∥2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). Montpellier: IEEE, 2015: 1052-1055. [8]HAJIPOUR S S, SHAMSOLLAHI M B. Selection of efficient features for discrimination of hand movements from MEG using a BCI competition IV data set[J]. Frontiers in Neuroscience, 2012, 6(6): 42. [9]ZICH C, DEBENER S, KRANCZIOCH C, et al. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery[J]. NeuroImage, 2015, 114: 438-447. [10]POWER S D, FALK T H, CHAU T. Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy[J]. Journal of Neural Engineering, 2010, 7(2): 1393-1402. [11]NASEER N, HONG K S. Functional near-infrared spectroscopy based discrimination of mental counting and no-control state for development of a brain-computer interface[C]∥2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka: IEEE, 2013: 1780-1783. [12]CHAN A, EARLY C E, SUBEDI S, et al. Systematic analysis of machine learning algorithms on EEG data for brain state intelligence[C]∥Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on. Washington: IEEE, 2015: 793-799. [13]HORTAL E,BEDA A, IEZ E, et al. Online classification of two mental tasks using a SVM-based BCI system[C]∥Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on. San Diego: IEEE, 2013: 1307-1310. [14]HENNRICH J, HERFF C, HEGER D, et al. Investigating deep learning for fNIRS based BCI[C]∥2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milano: IEEE, 2015: 2844-2847. [15]CHAE Y, JEONG J, JO S. Toward brain-actuated humanoid robots: Asynchronous direct control using an EEG-based BCI[J]. IEEE Transactions on Robotics, 2012, 28(5): 1131-1144. [16]MIN H C, LEE J S, HEO J, et al. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI[J]. Journal of Neuroscience Methods, 2016, 258: 104-113. [17]KHAN M J, HONG K S. Passive BCI based on drowsiness detection: An fNIRS study[J]. Biomedical Optics Express, 2015, 6(10): 4063-4078. [18]POWER S D, KUSHKI A, CHAU T. Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: Toward a three-state NIRS-BCI[J]. Bmc Research Notes, 2012, 5(1): 1-10. [19]AGUILAR J M, CASTILLO J, ELIAS D. EEG signals processing based on fractal dimension features and classified by neural network and support vector machine in motor imagery for a BCI[C]∥VI Latin American Congress on Biomedical Engineering CLAIB 2014. Paraná:Springer International Publishing, 2015: 615-618. [20]ZIMMERMANN R, MARCHAL-CRESPO L, EDELMANN J, et al. Detection of motor execution using a hybrid fNIRS-biosignal BCI: A feasibility study[J]. Journal of Neuroengineering & Rehabilitation, 2013, 10(1): 1-15. [21]NASEER N, HONG K S. Classification of functional near-infrared spectroscopy signals corresponding to right-and left-wrist motor imagery for development of a brain-computer interface.[J]. Neuroscience Letters, 2013, 553(8): 84-89. [22]KAISER V, BAUERNFEIND G, KREILINGER A, et al. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG[J]. Neuroimage, 2014, 85(1): 432-444. [23]SUZUKI M, MIYAI I, ONO T, et al. Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study[J]. Neuroimage, 2008, 39(2): 600-607. [24]HARADA T, MIYAI I, SUZUKI M, et al. Gait capacity affects cortical activation patterns related to speed control in the elderly[J]. Experimental Brain Research, 2008, 193(3): 445-454. [25]OBRIG H, HIRTH C, JUNGE-HLSING J G, et al. Cerebral oxygenation changes in response to motor stimulation.[J]. Journal of Applied Physiology, 1996, 81(3): 1174-1183. [26]TARKKA I M, STOKIC D S. Left prefrontal cortex contributes to motor imagery: A pilot study[J]. Research in Neuroscience, 2013, 2(2): 19-23. [27]KANTHACK T F D, BIGLIASSI M, ALTIMARI L R. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: A functional near-infrared spectroscopy (fNIRS) study[J]. Motriz Revista De Educao Física, 2013, 19(3): 627-632. [28]WRIESSNEGGER S C, KURZMANN J, NEUPER C. Spatio-temporal differences in brain oxygenation between movement execution and imagery: A multichannel near-infrared spectroscopy study[J]. International Journal of Psychophysiology, 2008, 67(1): 54-63. [29]JANG K E, TAK S, JUNG J, et al. Wavelet minimum description length detrending for near-infrared spectroscopy.[J]. Journal of Biomedical Optics, 2009, 14(3): 659-660. [30]NISHIYORI R, BISCONTI S, ULRICH B. Motor cortex activity during functional motor skills: An fNIRS study[J]. Brain Topography, 2015, 29(1): 1-14. [31]KIRILINA E, JELLOW A,HEINE A, et al. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy[J]. NeuroImage, 2012, 61(1): 70-81. [32]CUI X, BRAY S, REISS A L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics[J]. Neuroimage, 2010, 49(4): 3039-3046. [33]JIAO X, BAI J, CHEN S, et al. Research on mental fatigue based on entropy changes in space environment[C]∥2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS) Proceedings. Tianjin: IEEE, 2012: 74-77. [34]BENARON D A, HINTZ S R, VILLRINGER A, et al. Noninvasive functional imaging of human brain using light[J]. Journal of Cerebral Blood Flow & Metabolism Official Journal of the International Society of Cerebral Blood Flow & Metabolism, 2000, 20(3): 469-477. [35]HONG K S, NASEER N, KIM Y H. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI[J]. Neuroscience Letters, 2014, 587: 87-92. |
[1] | ZHU Dong, JIANG Pingping, YAN Guozheng, WANG Zhiwu, HAN Ding, ZHAO Kai, HUA Fangfang, YAO Shengjian, DING Zifan, ZHOU Zerun. Defecation Perception Reconstruction of an Artificial Anal Sphincter System [J]. Journal of Shanghai Jiaotong University, 2020, 54(8): 771-777. |
[2] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
[3] | WANG Jiangzhuo,XU Wencong,LI Jianxun,HE Fengshou,CAO Lanying,MIAO Lifeng. Dot-Track Association Algorithm for Radar Electronic Support Measurement Systems Based on Support Vector Machine [J]. Journal of Shanghai Jiaotong University, 2019, 53(9): 1091-1099. |
[4] | MA Zhihong,GONG Liang,LIN Ke,MAO Yuhan,WU Wei,LIU Chengliang. Estimation of Panicle Seed Number Based on Panicle Geometric Pattern Recognition [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 239-246. |
[5] | U Feng,FAN Chunju,XU Xunjian,LI Li,NI Jiayun. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model [J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1388-1395. |
[6] | GONG Pengwei1,FEI Yanqiong1, 3, SONG Libo2. Road Recognition Method of WheelTracked Robot Based on#br# Multisensor Information Fusion [J]. Journal of Shanghai Jiaotong University, 2017, 51(4): 398-. |
[7] | WANG Xiuqing1,HOU Zengguang2,ZENG Hui3,L Feng1,PAN Shiying1. Fault Diagnosis of Robots Based on Multi-Sensor Information Fusion [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 793-798. |
[8] | KUMAR Manoj1, SAMUI Pijush2*. Analysis of Epimetamorphic Rock Slopes Using Soft Computing [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(3): 274-278. |
[9] | WANG Jiajing1,2,ZHANG Zhusheng1,HE Weiping1. Identification of Tools with Failure Barcode Based on Multi-Information Fusion [J]. Journal of Shanghai Jiaotong University, 2014, 48(12): 1675-1680. |
[10] | YU Lu1,2,QIAO Ruiping2,HU Yuping2,ZHAO Jing1,2. A Video Shot Segmentation Method Based on a Two-Stage Support Vector Machine Classifier [J]. Journal of Shanghai Jiaotong University, 2014, 48(05): 668-673. |
[11] | ZHANG Yu-jina (张玉金), LI Sheng-honga* (李生红), WANG Shi-linb (王士林). Detecting Shifted Double JPEG Compression Tampering Utilizing Both Intra-Block and Inter-Block Correlations [J]. Journal of shanghai Jiaotong University (Science), 2013, 18(1): 7-16. |
[12] | CHEN Gu-Chun-a, SU Bo-b, WANG Shi-Lin-b, LI Sheng-Hong-a. Blind Detection of Splicing Image Based on Gray Level Co-occurrence Matrix of Image DCT Domain [J]. Journal of Shanghai Jiaotong University, 2011, 45(10): 1547-1551. |
[13] | HAN Hua-1, GU Bo-1, REN Neng-2. Fault Diagnosis for Refrigeration Systems Based on Principal Component Analysis and Support Vector Machine [J]. Journal of Shanghai Jiaotong University, 2011, 45(09): 1355-1361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||