[1]ENNIS P J, CZYRSKAFILEMONOWICZ A. Recent advances in creepresistant steels for power plant applications[J]. Sadhana, 2003, 28(3/4): 709730.
[2]王小威, 巩建鸣, 郭晓峰, 等. 超超临界发电厂中 P92 钢蠕变特性及断裂机制[J]. 南京工业大学学报(自然科学版),2014, 36(3): 3238.
WANG Xiaowei, GONG Jianming, GUO Xiaofeng, et al. Creep properties and fracture mechanism of P92 steel used inultrasupercritical power[J]. Journal of Nanjing Tech University (Natural Science Edition), 2014, 36(3): 3238.
[3]FEDOSEEVA A, DUDOVA N, KAIBYSHEV R. Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel[J]. Materials Science and Engineering: A, 2016, 654(1): 112.
[4]BENDICK W, GABREL J. Assessment of creep rupture strength for the new martensitic 9%Cr steels E911 and T/P92[J]. Materials at High Temperatures, 2008, 25(3): 139148.
[5]YURECHKO M, SCHROER C, SKRYPNIK A, et al. Creeptorupture of the steel P92 at 650℃ in oxygencontrolled stagnant lead in comparison to air[J]. Journal of Nuclear Materials, 2013, 432(1): 7886.
[6]PETRY C, LINDET G. Modelling creep behaviour and failure of 9Cr0.5Mo1.8WVNb steel[J]. International Journal of Pressure Vessels and Piping, 2009, 86(8): 486494.
[7]YIN Y F, FAULKNER R G. Continuum damage mechanics modelling based on simulations of microstructural evolution kinetics[J]. Materials Science and Technology, 2006, 22(8): 929936.
[8]WANG J, STEINMANN P, RUDOLPH J, et al. Simulation of creep and cyclic viscoplastic strains in highCr steel components based on a modified BeckerHackenberg model[J]. International Journal of Pressure Vessels and Piping, 2015, 128(1): 3647.
[9]CHEN H, ZHU G R, GONG J M. Creep life prediction for P91/12Cr1MoV dissimilar joint based on the omega method[J]. Procedia Engineering, 2015, 130(1): 11431147.
[10]JELWAN J, CHOWDHURY M, PEARCE G. Design for creep: A critical examination of some methods[J]. Engineering Failure Analysis, 2013, 27(1): 350372.
[11]ZHENG Y, YANG S, LING X. Creep life prediction of small punch creep testing specimens for serviceexposed Cr5Mo using the thetaprojection method[J]. Engineering Failure Analysis, 2017, 72(1): 5866.
[12]EVANS M. A comparative assessment of creep property predictions for a 1CrMoV rotor steel using the crispen, CDM, omega and theta projection techniques[J]. Journal of Materials Science, 2004, 39(6): 20532071.
[13]DYSON B. Use of CDM in materials modeling and component creep life prediction[J]. Journal of Pressure Vessel Technology, 2000, 122(3): 281296.
[14]PERRIN I J, HAYHURST D R. Creep constitutive equations for a 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 600℃—675℃[J]. The Journal of Strain Analysis for Engineering Design, 1996, 31(4): 299314.
[15]ENNIS P J, ZIELINSKALIPIEC A, WACHTER O, et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant[J]. Acta Materialia, 1997, 45(12): 49014907.
[16]XU Q, LU Z, WANG X. Damage modelling: The current state and the latest progress on the development of creep damage constitutive equations for high Cr steels[J]. Materials at High Temperatures, 2017, 34(3): 229237.
[17]SKLENIKA V, KUCHAOV K, SVOBODA M, et al. Longterm creep behavior of 9%—12%Cr power plant steels[J]. Materials Characterization, 2003, 51(1): 3548.
[18]MURCH C , LEEN S B, O’DONOGHUE P E, et al. A physicallybased creep damage model for effects of different precipitate types[J]. Materials Science and Engineering: A, 2017, 682(1): 714722.
|