Journal of Shanghai Jiao Tong University ›› 2017, Vol. 51 ›› Issue (8): 1013-1017.doi: 10.16183/j.cnki.jsjtu.2017.08.017
Previous Articles Next Articles
ZHANG Wei1,2,WANG Xiaowei1,2,3,JIANG Yong1,2
HUANG Xin1,2,GONG Jianming1,2,WENG Xiaoxiang1,2
Published:
2017-08-30
Supported by:
CLC Number:
ZHANG Wei1,2,WANG Xiaowei1,2,3,JIANG Yong1,2 HUANG Xin1,2,GONG Jianming1,2,WENG Xiaoxiang1,2. Simulation of Creep Deformation for P92 Steel Based on
Multiple Damage Parameters[J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 1013-1017.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2017.08.017
[1]ENNIS P J, CZYRSKAFILEMONOWICZ A. Recent advances in creepresistant steels for power plant applications[J]. Sadhana, 2003, 28(3/4): 709730. [2]王小威, 巩建鸣, 郭晓峰, 等. 超超临界发电厂中 P92 钢蠕变特性及断裂机制[J]. 南京工业大学学报(自然科学版),2014, 36(3): 3238. WANG Xiaowei, GONG Jianming, GUO Xiaofeng, et al. Creep properties and fracture mechanism of P92 steel used inultrasupercritical power[J]. Journal of Nanjing Tech University (Natural Science Edition), 2014, 36(3): 3238. [3]FEDOSEEVA A, DUDOVA N, KAIBYSHEV R. Creep strength breakdown and microstructure evolution in a 3% Co modified P92 steel[J]. Materials Science and Engineering: A, 2016, 654(1): 112. [4]BENDICK W, GABREL J. Assessment of creep rupture strength for the new martensitic 9%Cr steels E911 and T/P92[J]. Materials at High Temperatures, 2008, 25(3): 139148. [5]YURECHKO M, SCHROER C, SKRYPNIK A, et al. Creeptorupture of the steel P92 at 650℃ in oxygencontrolled stagnant lead in comparison to air[J]. Journal of Nuclear Materials, 2013, 432(1): 7886. [6]PETRY C, LINDET G. Modelling creep behaviour and failure of 9Cr0.5Mo1.8WVNb steel[J]. International Journal of Pressure Vessels and Piping, 2009, 86(8): 486494. [7]YIN Y F, FAULKNER R G. Continuum damage mechanics modelling based on simulations of microstructural evolution kinetics[J]. Materials Science and Technology, 2006, 22(8): 929936. [8]WANG J, STEINMANN P, RUDOLPH J, et al. Simulation of creep and cyclic viscoplastic strains in highCr steel components based on a modified BeckerHackenberg model[J]. International Journal of Pressure Vessels and Piping, 2015, 128(1): 3647. [9]CHEN H, ZHU G R, GONG J M. Creep life prediction for P91/12Cr1MoV dissimilar joint based on the omega method[J]. Procedia Engineering, 2015, 130(1): 11431147. [10]JELWAN J, CHOWDHURY M, PEARCE G. Design for creep: A critical examination of some methods[J]. Engineering Failure Analysis, 2013, 27(1): 350372. [11]ZHENG Y, YANG S, LING X. Creep life prediction of small punch creep testing specimens for serviceexposed Cr5Mo using the thetaprojection method[J]. Engineering Failure Analysis, 2017, 72(1): 5866. [12]EVANS M. A comparative assessment of creep property predictions for a 1CrMoV rotor steel using the crispen, CDM, omega and theta projection techniques[J]. Journal of Materials Science, 2004, 39(6): 20532071. [13]DYSON B. Use of CDM in materials modeling and component creep life prediction[J]. Journal of Pressure Vessel Technology, 2000, 122(3): 281296. [14]PERRIN I J, HAYHURST D R. Creep constitutive equations for a 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 600℃—675℃[J]. The Journal of Strain Analysis for Engineering Design, 1996, 31(4): 299314. [15]ENNIS P J, ZIELINSKALIPIEC A, WACHTER O, et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant[J]. Acta Materialia, 1997, 45(12): 49014907. [16]XU Q, LU Z, WANG X. Damage modelling: The current state and the latest progress on the development of creep damage constitutive equations for high Cr steels[J]. Materials at High Temperatures, 2017, 34(3): 229237. [17]SKLENIKA V, KUCHAOV K, SVOBODA M, et al. Longterm creep behavior of 9%—12%Cr power plant steels[J]. Materials Characterization, 2003, 51(1): 3548. [18]MURCH C , LEEN S B, O’DONOGHUE P E, et al. A physicallybased creep damage model for effects of different precipitate types[J]. Materials Science and Engineering: A, 2017, 682(1): 714722. |
[1] | ZHAO Ziren1, DU Shichang1, HUANG Delin1, REN Fei2, LIANG Xinguang2. Modelling and Bottleneck Analysis of Product Quality in Transient Phase#br# of MultiStage Manufacturing Systems Based on Markovian Chains [J]. Journal of Shanghai Jiao Tong University, 2017, 51(10): 1166-1173. |
[2] | ZHOU Penghui, MA Hongzhan, CHEN Dongping, CHEN Mengyue, CHU Xuening. Identification of Product Redesign Modules Based on#br# Fuzzy Random Failure Mode and Effects Analysis [J]. Journal of Shanghai Jiao Tong University, 2017, 51(10): 1189-1195. |
[3] | LI Changxi1, 2, ZHOU Yan1, LIN Han3, LI Lingzhi1, GUO Ge1. TemporalSpatial Sequential Fusion Recognition Method of#br# Ballistic Missile Target Based on MIMOFNN Model [J]. Journal of Shanghai Jiao Tong University, 2017, 51(9): 1138-. |
[4] | FENG Mingyue, HE Minghao, HAN Jun, YU Chunlai. High Resolution Direction of Arrival Estimation Based on#br# Covariance Fitting Estimation of Signal Parameters by#br# Rotational Invariance Technique Algorithm [J]. Journal of Shanghai Jiao Tong University, 2017, 51(9): 1145-. |
[5] |
?YANG Ping1,SHENG Jie1,WANG Yucheng2,LI Zhuyong1,JIN Zhijian1,HONG Zhiyong1.
Quench Propagation Characteristics Influenced by NonUniform Properties of YBa2Cu3O7δ High Temperature Superconducting Tape [J]. Journal of Shanghai Jiaotong University, 2017, 51(9): 1090-1096. |
[6] | WANG Xing, ZHOU Yipeng, TIAN Yuanrong, CHEN You, ZHOU Dongqing, HE Jiyuan. Sparse Decomposition for Frequency Modulation Radar Signal Based on#br# Advanced Genetic Algorithm and SinChirplet Atom [J]. Journal of Shanghai Jiao Tong University, 2017, 51(9): 1124-1130. |
[7] | ZHANG Liangjun1, 2, LI Xiaoci1, WU Jingyi1, CAI Aifeng1. ThermalStructure Coupling Analysis of #br# Microgravity Environment Simulation Suspension Structure for #br# Large Space Deployable Mechanisms [J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 954-961. |
[8] | XIA Hailiang1, 2, LIU Yakun1, 2, LIU Quanzhen3, LIU Baoquan3, FU Zhengcai1, 2. Metal Ablation Affected by Electrode Shapes Under#br# Long Continuing Lightning Current [J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 903-908. |
[9] | GU Jiayang, XIE Yulin, TAO Yanwu, HUANG Xianghong, WU Jie. Numerical Simulation and Experimental Study on VortexInduced#br# Motion of a New Type of Floating Drilling Production Storage Offloading [J]. Journal of Shanghai Jiao Tong University, 2017, 51(7): 878-885. |
[10] | LIN Da, ZHU Yijia, WEI Xiaodong, WANG Zhiyu, ZHANG Wugao. Combustion and Particle Emission Characteristics Affected by#br# Fuel Supply Parameters for a Diesel Engine Fuelled with#br# Polyoxymethylene Dimethyl Ethers/Diesel [J]. Journal of Shanghai Jiao Tong University, 2017, 51(7): 787-795. |
[11] | MENG Qingyang1, YAN Weiwu1, HU Yong1, CHENG Jianlin1, CHEN Shihe2, ZHANG Xi2. Model Identification Based on Subspace Model Identification of#br# Superheated Steam System in UltraSupercritical CoalFired Power Unit [J]. Journal of Shanghai Jiao Tong University, 2017, 51(6): 672-678. |
[12] | JIANG Huajuna, CAI Yana, b, LI Chaohaoa, LI Fanga, b, HUA Xueminga, b. Recognition Method for Gas Pores on XRay Image of Lap Joints#br# Based on the Improved Sobel Algorithm [J]. Journal of Shanghai Jiao Tong University, 2017, 51(6): 665-671. |
[13] | DONG Guanhua,YIN Qin,YIN Guofu,XIANG Zhaowei. Identification and Modeling of Coupling Dynamic Stiffness in Joints of Machine Tool [J]. Journal of Shanghai Jiaotong University, 2015, 49(09): 1263-1434. |
[14] | XIE Qijiang,YU Haidong. Coupling Relationship Between Loads on Cutterhead of Tunnel Boring Machine and Contact Stiffness of Gripper Shoes and Rocks [J]. Journal of Shanghai Jiaotong University, 2015, 49(09): 1269-1275. |
[15] | ZHONG Jianlin1,MA Dawei1,REN Jie1,LI Shijun2,WANG Xu3. Static Compression Analysis of Rubber Hollow Cylinder Based on Plane Strain Assumption [J]. Journal of Shanghai Jiaotong University, 2015, 49(09): 1276-1280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||