Journal of Shanghai Jiaotong University ›› 2017, Vol. 51 ›› Issue (10): 1235-1240.doi: 10.16183/j.cnki.jsjtu.2017.10.013
Previous Articles Next Articles
LIU Kaia,ZHANG Liminb,ZHOU Lijuna
Online:
2017-10-31
Published:
2017-10-31
Supported by:
CLC Number:
LIU Kaia,ZHANG Liminb,ZHOU Lijuna. Design of Random Restricted Boltzmann Machine Group[J]. Journal of Shanghai Jiaotong University, 2017, 51(10): 1235-1240.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2017.10.013
[1]LEE H, EKANADHAM C, NG A Y. Sparse deep belief net model for visual area V2[C]∥Proceedings of Advances in Neural Information Processing Systems. NY, United States: Curran Associates Inc, 2008: 873880. [2]LUO H, SHEN R, NIU C. Sparse group restricted Boltzmann machines[C]∥Proceedings of 25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference. CA, United States: AI Access Foundation, 2011: 429434. [3]JIN N, Zhang J S, ZHANG C X. A sparseresponse deep belief network based on rate distortion theory[J]. Pattern Recognition, 2014, 47(9): 31793191. [4]BREULEUX O, BENGIO Y, VINCENT P. Quickly generating representative samples from an RBMderived process[J]. Neural Computation, 2011, 23(8): 20582073. [5]BARTHELME S, CHOPIN N. The Poisson transform for unnormalised statistical models[J]. Statistics & Computing, 2014, 25(4): 114. [6]胡洋. 基于马尔可夫链蒙特卡罗方法的RBM学习算法改进[D]. 上海: 上海交通大学计算机科学与工程系, 2012. [7]TOSUN H, SHEPPARD J W. Training restricted Boltzmann machines with overlapping partitions[C]∥Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2014:195208. [8]罗恒. 基于协同过滤视角的受限玻尔兹曼机研究[D]. 上海: 上海交通大学 计算机科学与工程系, 2011. [9]MIN M R, NING X, CHENG C, et al. Interpretable sparse highorder Boltzmann machines[J]. Communications IET, 2014, 10(1): 614622. [10]MNIH V, LAROCHELLE H, HINTON G E. Conditional restricted Boltzmann machines for structured output prediction[C]∥Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence. Arlington, United States: AUAI Press, 2011: 514522. [11]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 19291958. [12]刘凯, 张立民, 张超. 受限玻尔兹曼机的新混合稀疏惩罚机制[J]. 浙江大学学报(工学版), 2015, 49(6): 10701078. LIU Kai, ZHANG Limin, ZHANG Chao. New hybrid sparse penalty mechanism of restricted Boltzmann machine[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(6): 10701078. [13]SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines[C]∥Proceedings of 12th International Conference on Artificial Intelligence and Statistics. MA, United States: Microtome Publishing Brookline, 2009: 448455. [14]SRIVASTAVA N. Improving neural networks with dropout[D]. Toronto: University of Toronto, 2013. [15]GOODFELLOW I J, WARDEFARLEY D, MIRZA M, et al. Maxout networks[J]. Computer Science, 2013, 28(3): 13191327. |
[1] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[2] | WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849. |
[3] | LIANG Liang1 (梁 良), SHI Ying1∗ (石 英), MOU Junmin2∗ (牟军敏). Submarine Multi-Model Switching Control Under Full Working Condition Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 402-410. |
[4] | DU Jian1∗ (杜 剑), ZHAO Xu2 (赵 旭), GUO Liming2 (郭力铭), WANG Jun2 (王 军). Machine Learning-Based Approach to Liner Shipping Schedule Design [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 411-423. |
[5] | JIA Dao, CHEN Lei, ZHU Zhipeng, YU Yao, CHI Dejian. Application of Machine Learning in Fuze- Warhead System Design [J]. Air & Space Defense, 2022, 5(2): 27-31. |
[6] | LÜ Chaofan, YAN Yingjie, LIN Li, CHAI Gang, BAO Jinsong. Design of Mandibular Angle Osteotomy Plane Based on Point Cloud Semantic Segmentation Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1509-1517. |
[7] | WANG Zhuoxin, ZHAO Haitao, XIE Yuehan, REN Hantao, YUAN Mingqing, ZHANG Boming, CHEN Ji’an. Prediction of Modulus of Composite Materials by BP Neural Network Optimized by Genetic Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1341-1348. |
[8] | LIUYongfei. Simulation Analysis of a Subsea Hydraulic Control System Based on SimulationX [J]. Ocean Engineering Equipment and Technology, 2022, 9(1): 1-7. |
[9] | WANGJuan, ZHENG Maoyao, ZHANGZiliang, SONGGuangxing, ZHANGLei. Precision Control Technology for Large Semi-Submersible Platforms [J]. Ocean Engineering Equipment and Technology, 2022, 9(1): 21-26. |
[10] | WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[11] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[12] | XIA Ming (夏明), XU Tianyi (徐天意), JIANG Hong∗ (姜虹). Progress and Perspective of Artificial Intelligence and Machine Learning of Prediction in Anesthesiology [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
[13] | TAO Haihong, YAN Yingfei. A Netted Radar Node Selection Algorithm Based on GA-CNN [J]. Air & Space Defense, 2022, 5(1): 1-5. |
[14] | JIN Lijie, WU Yatao. Radar Signal Modulation Type Recognition Based on Double CNN [J]. Air & Space Defense, 2022, 5(1): 66-70. |
[15] | WANGJuan, YANG Mingwang, ZHENG Maoyao, LIULingyun, ZHAOLijun. Application of High Strength Steelin Construction of Large Semi-Submersible Platforms [J]. Ocean Engineering Equipment and Technology, 2022, 9(1): 27-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||