[1]BEKESY G V. Experiments in hearing [M]. New York: McGrawHill Book Company, Inc, 1960.
[2]RHRODE W S. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mssbauer technique [J]. J Acoust Soc Am, 1971, 49(4): 12181231.
[3]SELLICK P, PATUZZI R, JOHNSTONE B. Measurement of basilar membrane motion in the guinea pig using the Mssbauer technique [J]. J Acoust Soc Am, 1982, 72(1): 131141.
[4]KHANNA S, LEONARD D. Measurement of basilar membrane vibrations and evaluation of the cochlear condition [J]. Hearing Research, 1986, 23(1): 3753.
[5]ROBLES L, RUGGERO M A, RICH N C. Basilar membrane mechanics at the base of the chinchilla cochlea. I. Inputoutput functions, tuning curves, and response phases [J]. J Acoust Soc Am, 1986, 80(5):13641374.
[6]NUTTALL A L, DOLAN D F, AVINASH G. Laser Doppler velocimetry of basilar membrane vibration [J]. Hearing Research, 1991, 51(2): 203214.
[7]COOPER N P, RHODE W S. Basilar membrane mechanics in the hook region of cat and guineapig cochlea [J]. Hearing Research, 1992, 63(12): 163190.
[8]REN T Y, HE W X, GILLESPIE P G. Measurement of cochlear power gain in the sensitive gerbil ear [J]. Nature Communications, 2011, 2(1): 17.
[9]KEMP D T. Stimulated acoustic emissions from within the human auditory system [J]. J Acoust Soc Am, 1978, 64(5): 13861391.
[10]ROBLES L, RUGGERO M A, RICH N C. Twotone distortion on the basilar membrane of the chinchilla cochlea [J]. J Neurophysiol, 1997, 77(5): 23852399.
[11]NUTTALL A L. Twotone suppression of inner hair cell and basilar membrane responses in the guinea pig [J]. J Acoust Soc Am, 1993, 93(1): 390400.
[12]ROBLES L, RUGGERO M A, RICH N C. Twotone distortion in the basilar membrane of the cochlea [J]. Nature, 1991, 349: 413424.
[13]刘迎曦, 李生, 孙秀珍. 人耳传声数值模型 [J]. 力学学报, 2008, 40(1): 107113.
LIU Yingxi, LI Sheng, SUN Xiuzhen. Numerical modeling of human ear for sound transmission [J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 107113.
[14]王学林, 周健军, 凌玲,等. 含主动耳蜗的人耳传声有限元模拟 [J]. 振动与冲击, 2012, 31(21): 4145.
WANG Xuelin, ZHOU Jianjun, LING Ling, et al. FE simulation of sound transmission in human ear with an active cochlea model [J]. Journal of Vibration and Shock, 2012, 31(21): 4145.
[15]王振龙, 王学林, 胡于进,等. 基于中耳与耳蜗集成有限元模型的耳声传递模拟 [J]. 中国生物医学工程学报, 2011, 30(1): 6066.
WANG Zhenlong, WANG Xuelin, HU Yujin, et al. FEM simulation of sound transmission based on integrated model of niddle ear and cochlea [J]. Chinese Journal of Biomedical Engineering, 2011, 30(1): 6066.
[16]姚文娟, 黄新生, 李武, 等. 人工听骨不同接入方式对耳结构动力响应的影响 [J]. 医用生物力学, 2010, 25(3): 175181.
YAO Wenjuan, HUANG Xinsheng, LI Wu, et al. Effect of different connecting methods for artificial ossicle on dynamic response of ear [J]. Journal of Medical Biomechanics, 2010, 25(3): 175181.
[17]REN T Y, NUTTALL A L. Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea [J]. Hearing Research, 2001, 151(1): 4860.
[18]REN T Y. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea [J]. Proceedings of the National Academy of Sciences USA, 2002, 99(26): 1710117106. |